Query Containment for Databases with Uncertainty and Lineage

Foto N. Afrati Angelos Vasilakopoulos

National Technical University of Athens

July 15, 2013

Query Containment for Databases, with Uncertainty and Lineage

1 / 24

Databases with Lineage - LDBs

Databases with Uncertainty and Lineage - ULDBs

Suspect(name) : -Drives(name, car), Saw(witness, car)

Possible Instances - PIs

Suspect(name) : -Drives(name, car), Saw(witness, car)

Query Containment

A query Q_1 is said to be contained in a query Q_2 if for every database D, database $Q_1(D)$ is contained in database $Q_2(D)$.

For ordinary databases, a database D_1 is contained in a database D_2 if the tuples of every relation in D_1 are contained in the corresponding relation of D_2 as a set.

A relation of ULDB however semantically is not a set; it represents a set of possible LDB instances - PIs.

A possible instance PI, is an LDB and does not only contain a set of tuples, but a bag of tuples with different lineage information.

LDB Database containment

- $D \subseteq D'$ under data set containment.
- $D \not\subseteq D'$ if we take lineage into account ($12 \in \lambda'(21)$, but $12 \notin \lambda(21)$, so $\lambda'_B(21) \not\subseteq \lambda_B(21)$).

When does linage matter?

If tuple 12 (*Kate*, *Mazda*) was considered unreliable then tuple 21 would be unreliable in D', while still reliable in D.

A system might want to delete unreliable data. Then even data set containment $D \subseteq D'$ will no longer hold.

Goals

LDB and ULDB Database containment

- Introduce several variants of LDB database containment.
- Define corresponding different kinds of ULDB Database containment.
- Discuss some cases where each semantics may be suitable.
- Study exact interrelationship among them as concerns implication of database containment.

Query Containment

- Study ULDB Query containment for Conjunctive Queries (CQs) under each of the semantics.
- Computational complexity.

Data LDB Containment \subseteq_{Data}

Let $D = (\bar{R}, S, \lambda)$ and $D' = (\bar{R}', S', \lambda')$ be two LDBs, where \bar{R} and \bar{R}' have the same schemas. We say that D is *Data* LDB-contained in D' (denoted as $D \subseteq_{Data} D'$), if: 1. $S_{-} \subseteq S'_{-}$. 2. For every relation $R_i \in D$ and its corresponding $R'_i \in D'$ the following holds:

if $t \in R_i$ then there exists a tuple with data t in R'_i .

Semantics #2: Contained Base Lineage - \subseteq_{CBase}

Contained Base Lineage (CBase-lineage) LDB Containment \subseteq_{CBase}

Let $D = (\bar{R}, S, \lambda)$ and $D' = (\bar{R}', S', \lambda')$ be two LDBs, where \bar{R} and \bar{R}' have the same schemas. We say that D is *CBase-Lineage* LDB-contained in D' (denoted as $D \subseteq_{CBase} D'$), if: 1. $S_{-} \subseteq S'_{-}$. 2. For every relation $R_i \in D$ and its corresponding $R'_i \in D'$ the following holds:

if $t \in R_i$ then there exists a tuple with data t in R'_i and $COND_2$: $\lambda'_B(t) \subseteq \lambda_B(t)$.

LDB Database containment

Under Semantics #1: $D \subseteq_{Data} D'$ Under Semantics #2: $D \not\subseteq_{CBase} D'$

 $12 \in \lambda'(21)$, but $12 \notin \lambda(21)$, so $\lambda'_B(21) \nsubseteq \lambda_B(21)$.

Semantics #3: Trio/Transitive Closure - \subseteq_{TR}

Semantics #3: Trio/Transitive Closure of Lineage Containment (TR-lineage - \subseteq_{TR}).

Let $D = (\bar{R}, S, \lambda)$ and $D' = (\bar{R'}, S', \lambda')$ be two LDBs, where \bar{R} and $\bar{R'}$ have the same schemas. We say that D is *TR-lineage* LDB-contained in D' (denoted as $D \subseteq_{TR} D'$), if: 1. $S_{-} \subseteq S'_{-}$. 2. For every relation $R_i \in D$ and its corresponding $R'_i \in D'$ the following holds:

if $t \in R_i$ then there exists a tuple with data t in R'_i and $COND_3$: $\lambda(t) \subseteq \lambda'^*(t)$.

Semantics #3: Trio/Transitive Closure - \subseteq_{TR}

Semantics #3: Trio/Transitive Closure of Lineage Containment (TR-lineage - \subseteq_{TR}).

The additional condition is: $COND_3$: $\lambda(t) \subseteq \lambda'^*(t)$.

Semantics #4: Same Base-lineage - \subseteq_{SBase}

Semantics #4: Same Base-Lineage (SBase-lineage) LDB Containment \subseteq_{SBase}

Let $D = (\bar{R}, S, \lambda)$ and $D' = (\bar{R'}, S', \lambda')$ be two LDBs, where \bar{R} and $\bar{R'}$ have the same schemas. We say that D is *Same Base-Lineage* LDB-contained in D' (denoted as $D \subseteq_{SBase} D'$), if: 1. $S_{-} \subseteq S'_{-}$.

2. For every relation $R_i \in D$ and its corresponding $R'_i \in D'$ the following holds:

if $t \in R_i$ then there exists a tuple with data t in R'_i and $COND_4$: $\lambda'_B(t) = \lambda_B(t)$.

Semantics #4: Same Base-Lineage (SBase-lineage) LDB Containment \subseteq_{SBase}

The additional condition is: $COND_4$: $\lambda'_B(t) = \lambda_B(t)$.

SBase Lineage is also important in ULDB data exchange.

Semantics #5: Same-Lineage LDB Containment ⊆_{Same}

Semantics #5: Same-Lineage LDB Containment \subseteq_{Same}

Let $D = (\bar{R}, S, \lambda)$ and $D' = (\bar{R}', S', \lambda')$ be two LDBs, where \bar{R} and \bar{R}' have the same schemas. We say that D is *Same Lineage* LDB-contained in D' (denoted as $D \subseteq_{Same} D'$), if: 1. $S_{-} \subseteq S'_{-}$. 2. For every relation $R_i \in D$ and its corresponding $R'_i \in D'$ the

following holds:

if $t \in R_i$ then there exists a tuple with data t in R'_i and $COND_5$: $\lambda'(t) = \lambda(t)$.

Adding Uncertainty

ULDB Database Containment Let \subseteq_L denote a variant of LDB containment. Let U and U' be two ULDB's. We say that U is L-contained in U' (denoted with \subseteq_L) if: i) for every possible instance D_i of U there exists a possible instance D'_j of U' such that: $D_i \subseteq_L D'_j$, and ii) for every possible instance D'_j of U' there exists a possible instance D_i of U such that: $D_i \subseteq_L D'_j$.

ULDB Query Containment

Let \subseteq_L denote a variant of LDB containment. A query Q_1 is ULDB contained in a query Q_2 if for every ULDB U we have that: $Q_1(U) \subseteq_L Q_2(U)$.

Our Results 1:

Comparison of Different Semantics

#	Semantics	Implies DB cont.
1	Data	-
2	CBase- Lineage	1
3	TR- Lineage 1	
4	SBase- Lineage 1, 2	
5	Same Lineage	1, 2, 3, 4

Our Results 2:

Complexity of ULDB Conjunctive Query Containment

#	Semantics	CQ Containment Test	Complexity
1	Data	Containment Mapping	NP-Complete
2	CBase- Lineage	Containment Mapping	NP-Complete
3	TR- Lineage	Onto Containment Mapping	NP-Complete
4	SBase- Lineage	Onto Containment Mapping	NP-Complete
5	Same Lineage	Onto Containment Mapping	NP-Complete

Containment mapping and subgoal-onto containment mapping

Containment Mapping $h: Q' \rightarrow Q$

- $h: values(Q') \rightarrow values(Q)$:
 - \forall constants c: h(c) = c, h(head(Q')) = head(Q)
 - every atom in the body of Q' is mapped to an atom of the body of Q with the same predicate.

Subgoal-onto Containment Mapping

A containment mapping from Q' to Q is subgoal-onto if we additionally have that the set of images of all the subgoals of Q' contains every subgoal of the body of Q.

Semantics #6: Uncertain Equality containment - \subseteq_E

A new kind of containment for uncertain databases with no lineage was defined in:

"Foundations of uncertain-data integration.

P. Agrawal, A. D. Sarma, J. Ullman, and J. Widom. VLDB 2010."

Informally equality containment $U_1 \subseteq_E U_2$ means that if we throw away from the possible worlds of U_2 all tuples that do not appear in any possible world of U_1 , then the resulting possible worlds are the worlds of U_1 .

Example (subgoal-onto containment mapping is not good)

$$\begin{split} &U = \{\{(a, a)\}, \{(b, b)\}, \{(a, b), (b, a)\}\}, \ a \neq b \\ &Q_1(x):-R(x, x) \\ &Q_2(x):-R(x, y). \\ &\exists h: Q_2 \to Q_1: \text{ subgoal-onto} \end{split}$$

$$Q_1(U) = \{ \{a\}, \{b\}, \emptyset \} \\ Q_2(U) = \{ \{a\}, \{b\}, \{a, b\} \} \}$$

CQ Containment test and complexity:

Given two conjunctive queries Q_1 and Q_2 we have that $Q_1 \subseteq_E Q_2$ iff there exists a containment mapping $h: Q_2 \to Q_1$ and a containment mapping $h': Q_1 \to Q_2$. In addition checking whether $Q_1 \subseteq_E Q_2$ is NP-complete.

23 / 24

Thank you

Query Containment for Databases, with Uncertainty and Lineage

24 / 24