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Semi-isolation and isolation

Definition (A. Pillay). LetM be a model of a theory T , ā and b̄
be tuples inM, A be a subset of M. The tuple ā semi-isolates the
tuple b̄ over the set A if there exists a formula ϕ(ā, ȳ) ∈ tp(b̄/Aā)
for which ϕ(ā, ȳ) ` tp(b̄/A) holds.

In this case we say that the formula ϕ(ā, ȳ) (with parameters in A)
witnesses that b̄ is semi-isolated over ā with respect to A.
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Semi-isolation and isolation

Similarly, a tuple ā isolates a tuple b̄ over A if there exists a formula
ϕ(ā, ȳ) ∈ tp(b̄/Aā) for which ϕ(ā, ȳ) ` tp(b̄/A) and ϕ(ā, ȳ) is a
principal (i. e., isolating) formula.

In this case we say that the formula ϕ(ā, ȳ) (with parameters in A)
witnesses that b̄ is isolated over ā with respect to A.

If ā (semi-)isolates b̄ over ∅, we simply say that ā (semi-)isolates b̄;
and if a formula ϕ(ā, ȳ) witnesses that ā (semi-)isolates b̄ over ∅
then we say that ϕ(ā, ȳ) witnesses that ā (semi-)isolates b̄.
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Semi-isolation and isolation

For a family R ⊂ S(T ) of 1-types we denote by IR (inM) the set

{(a, b) | tp(a), tp(b) ∈ R and a isolates b}

and by SIR (inM) the set

{(a, b) | tp(a), tp(b) ∈ R and a semi-isolates b}.

Clearly, IR ⊆ SIR and, for any set of realizations of types in R , the
relations IR and SIR are reflexive. The relation of semi-isolation on
the set of tuples in an arbitrary model is transitive and, in
particular, any relation SIR is transitive. At the same time IR may
be non-transitive.

Ip 
 I{p}, SIp 
 SI{p}.
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Principal arcs and edges

Let T be a complete theory,M |= T . Consider types
p(x), q(y) ∈ S(∅), realized inM, and all (p, q)-preserving
(p, q)-semi-isolating, (p → q)-, or (q ← p)-formulas ϕ(x , y) of T ,
i. e., formulas for which there is a ∈ M such that |= p(a) and
ϕ(a, y) ` q(y). Now, for each such a formula ϕ(x , y), we define a
binary relation Rp,ϕ,q 
 {(a, b) | M |= p(a) ∧ ϕ(a, b)}. If
(a, b) ∈ Rp,ϕ,q, (a, b) is called a (p, ϕ, q)-arc. If ϕ(a, y) is principal
(over a), the (p, ϕ, q)-arc (a, b) is also principal.
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Principal arcs and edges

If ϕ(x , y) is (p ↔ q)-formula, i.e., both (p → q)- and
(q → p)-formula, and |= p(a) ∪ {ϕ(a, b)} ∪ q(b) then set
[a, b] 
 {(a, b), (b, a)} is said to be a (p, ϕ, q)-edge. If the
(p, ϕ, q)-edge [a, b] consists of principal (p, ϕ, q)- and
(q, ϕ(y , x), p)-arcs then [a, b] is a principal (p, ϕ, q)-edge.
(p, ϕ, q)-arcs and (p, ϕ, q)-edges are called arcs and edges
respectively if we say about fixed or some formula ϕ(x , y). If (a, b)
is a principal arc and (b, a) is not a principal arc (on any formula)
then (a, b) is called irreversible.
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PF(p, q)

For types p(x), q(y) ∈ S(∅), we denote by PF(p, q) the set

{ϕ(x , y) | ϕ(a, y) is a principal formula, ϕ(a, y) ` q(y), where |= p(a)}.

Let PE(p, q) be the set of pairs of formulas
(ϕ(x , y), ψ(x , y)) ∈ PF(p, q) such that for any (some) realization a
of p the sets of solutions for ϕ(a, y) and ψ(a, y) coincide. Clearly,
PE(p, q) is an equivalence relation on the set PF(p, q). Notice that
each PE(p, q)-class E corresponds to either a principal edge or to
an irreversible principal arc connecting realizations of p and q by
some (any) formula in E . Thus the quotient PF(p, q)/PE(p, q) is
represented as a disjoint union of sets PFS(p, q) and PFN(p, q),
where PFS(p, q) consists of PE(p, q)-classes corresponding to
principal edges and PFN(p, q) consists of PE(p, q)-classes
corresponding to irreversible principal arcs.
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Labels for isolating formulas

Let T be a complete theory without finite models,
U = U− ∪̇ {0} ∪̇U+ be an alphabet of cardinality ≥ |S(T )| and
consisting of negative elements u− ∈ U−, positive elements
u+ ∈ U+, and zero 0. As usual, we write u < 0 for any u ∈ U− and
u > 0 for any u ∈ U+.1 The set U− ∪ {0} is denoted by U≤0 and
U+ ∪ {0} is denoted by U≥0. Elements of U are called labels.

1If U is at most countable, we assume that U is a subset of the set Z of
integers.
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Labels for isolating formulas and labelling functions

Let ν(p, q): PF(p, q)/PE(p, q)→ U be injective labelling
functions, p(x), q(y) ∈ S(∅), for which negative elements
correspond to the classes in PFN(p, q)/PE(p, q) and non-negative
elements correspond to the classes in PFS(p, q)/PE(p, q) such
that 0 is defined only for p = q and is represented by the formula
(x ≈ y), ν(p) 
 ν(p, p). We additionally assume that
ρν(p) ∩ ρν(q) = {0} for p 6= q (where, as usual, we denote by ρf the
image of the function f ) and ρν(p,q) ∩ ρν(p′,q′) = ∅ if p 6= q and
(p, q) 6= (p′, q′). Labelling functions with the properties above as
well families of these functions are said to be regular. Below we shall
consider only regular labelling functions and their regular families.
We denote by θp,u,q(x , y) formulas in PF(p, q) with a label
u ∈ ρν(p,q). If the type p is fixed and p = q then the formula
θp,u,q(x , y) is denoted by θu(x , y).
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Algebra of distributions for binary isolating formulas

For types p1, p2, . . . , pk+1 ∈ S1(∅) and sets X1,X2, . . . ,Xk ⊆ U of
labels we denote by

P(p1,X1, p2,X2, . . . , pk ,Xk , pk+1)

the set of all labels u ∈ U corresponding to formulas θp1,u,pk+1(x , y)
satisfying, for realizations a of p1 and some u1 ∈ X1, . . . , uk ∈ Xk ,
the following condition:

θp1,u,pk+1(a, y) ` θp1,u1,p2,u2,...,pk ,uk ,pk+1(a, y),

where
θp1,u1,p2,u2,...,pk ,uk ,pk+1(x , y) 



 ∃x2, x3, . . . , xk−1, xk(θp1,u1,p2(x , x2) ∧ θp2,u2,p3(x2, x3) ∧ . . .
. . . ∧ θpk−1,uk−1,pk (xk−1, xk) ∧ θpk ,uk ,pk+1(xk , y)).

Thus the Boolean P(U) of U is the universe of an algebra of
distributions of binary isolating formulas with k-ary operations

P(p1, ·, p2, ·, . . . , pk , ·, pk+1),

where p1, . . . , pk+1 ∈ S1(∅). This algebra has a natural restriction
to any family R ⊆ S1(∅).
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Algebra of distributions for binary isolating formulas

If each set Xi is a singleton consisting of an element ui then we use
ui instead of Xi in P(p1,X1, p2,X2, . . . , pk ,Xk , pk+1) and write

P(p1, u1, p2, u2, . . . , pk , uk , pk+1).

If all types pi equal to a type p then we write Pp(X1,X2, . . . ,Xk)
and Pp(u1, u2, . . . , uk) as well as bX1,X2, . . . ,Xkcp and
bu1, u2, . . . , ukcp instead of

P(p1,X1, p2,X2, . . . , pk ,Xk , pk+1)

and
P(p1, u1, p2, u2, . . . , pk , uk , pk+1)

respectively. We omit the index ·p if the type p is fixed. In this case,
we write θu1,u2,...,uk (x , y) instead of θp,u1,p,u2,...,p,uk ,p(x , y).
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Labelling groupoid

THEOREM (I.V.Shulepov – S.)

For any complete theory T , any type p ∈ S(T ) having the model
Mp, and the regular labelling function ν(p), any operation
Pp(·, ·, . . . , ·) on the set P(ρν(p)) \ {∅} is interpretable by a term
of the groupoid Pν(p) 
 〈P(ρν(p)) \ {∅}; b·, ·c〉. The groupoid
Pν(p) has the unit {0} and, having right associativity, is a monoid.
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Deterministic and almost deterministic groupoids

A structure Pν(p) is called (almost) deterministic if the set bu1, u2c
is a singleton (is nonempty and finite) for any u1, u2 ∈ ρν(p).
Any deterministic structure Pν(p) is a monoid (being almost
deterministic). It is generated by the monoid P′ν(p) = 〈ρν(p); �〉,
where bu, vc = {u � v} for u, v ∈ ρν(p).
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Hasse diagram

A Hasse diagram is presented in Figure 1 illustrating the links of
the structure Pν(p) with structures above, being restrictions of
Pν(p) to subalphabets of U. Here the superscripts ·≤0 and ·≥0

point out on restrictions of Pν(p) to the sets of non-positive and
non-negative elements respectively, the subscripts ·d and ·ad
indicate the sets of deterministic and almost deterministic elements;
Gν(p) is a submonoid of monoid Pν(p),d consisting of all
non-negative deterministic elements u in ρν(p), for which u−1 are
also deterministic;
the monoid (Gν(p))

′ is a group.

Just Pν(p) and P≤0
ν(p) may not be monoids.
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Hasse diagram
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I -groupoids

Let U = U− ∪̇ {0} ∪̇U+ be an alphabet consisting of a set U− of
negative elements, a set U+ of positive elements, and zero 0. As
above we write u < 0 for any element u ∈ U−, u > 0 for any
element u ∈ U+, and u · v instead of {u} · {v} considering an
operation · on the set P(U) \ {∅}.
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I -groupoids

A groupoid P = 〈P(U) \ {∅}; ·〉 is called an I -groupoid if it
satisfies the following conditions:

• the set {0} is the unit of the groupoid P;

• the operation · of the groupoid P is generated by the function ·
on elements in U such that every elements u, v ∈ U define a
nonempty set (u · v) ⊆ U: for any sets X ,Y ∈ P(U) \ {∅} the
following equality holds:

X · Y =
⋃
{x · y | x ∈ X , y ∈ Y };

• if u < 0 then the sets u · v and v · u consist of negative elements
for any v ∈ U;
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I -groupoids

• if u > 0 and v > 0 then the set u · v consists of non-negative
elements;

• for any u > 0 there is the unique inverse element u−1 > 0 such
that 0 ∈ (u · u−1) ∩ (u−1 · u);

• if a positive element u belongs to a set v1 · v2 then u−1 belongs
to v−1

2 · v−1
1 ;

• for any elements u1, u2, u3 ∈ U the following inclusion holds:

(u1 · u2) · u3 ⊇ u1 · (u2 · u3),

and the strict inclusion

(u1 · u2) · u3 ⊃ u1 · (u2 · u3)

may be satisfied only for u1 < 0 and |u2 · u3| ≥ ω;
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I -groupoids

• the groupoid P contains the deterministic subgroupoid P≥0
d

(being a monoid) with the universe P(U≥0
d ) \ {∅}, where

U≥0
d = {u ∈ U≥0 | u−1 · u = {0}};

any set u · v is a singleton for u, v ∈ U≥0
d .

By the definition each I -groupoid P contains I -subgroupoids P≤0

and P≥0 with the universes P(U− ∪ {0}) \ {∅} and
P(U+ ∪ {0}) \ {∅} respectively. The structure P≥0 is a monoid.
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I -groupoids

THEOREM (I.V.Shulepov – S.)

For any (at most countable) I -groupoid P, there is a (small) theory
T with a type p(x) ∈ S(T ) and a regular labelling function ν(p)
such that Pν(p) = P.
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Partial groupoids

The results are generalized for arbitrary family of 1-types forming
partial groupoids of isolating formulas.
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SICF(p, q)

For types p(x), q(y) ∈ S(∅), we denote by SICF(p, q) the set of
(p → q)-formulas ϕ(x , y) such that {ϕ(a, y)} is consistent for
|= p(a). Let SICE(p, q) be the set of pairs of formulas
(ϕ(x , y), ψ(x , y)) ∈ SICF(p, q) such that for any (some)
realization a of p the sets of solutions for ϕ(a, y) and ψ(a, y)
coincide. Clearly, SICE(p, q) is an equivalence relation on the set
SICF(p, q). Notice that each SICE(p, q)-class E corresponds to
either a set of (p, ϕ, q)-edges, or a set of irreversible (p, ϕ, q)-arcs,
or simultaneously a set of (p, ϕ, q)-edges and of irreversible
(p, ϕ, q)-arcs linking realizations of p and q by any (some) formula
ϕ in E . Thus the quotient SICF(p, q)/SICE(p, q) is represented as
a disjoint union of sets SICFE(p, q), SICFA(p, q), and
SICFM(p, q), where SICFE(p, q) consists of SICE(p, q)-classes
corresponding to sets of edges, SICFA(p, q) consists of
SICE(p, q)-classes corresponding to sets of irreversible arcs, and
SICFM(p, q) consists of SICE(p, q)-classes corresponding to sets
containing edges and irreversible arcs.
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Labels for semi-isolating formulas

Let T be a complete theory without finite models,
U = U− ∪̇ {0} ∪̇U+ ∪̇U ′ be an alphabet of cardinality ≥ |S(T )|
and consisting of negative elements u− ∈ U−, positive elements
u+ ∈ U+, neutral elements u′ ∈ U ′, and zero 0. As usual, we write
u < 0 for any u ∈ U− and u > 0 for any u ∈ U+. The set
U− ∪ {0} is denoted by U≤0 and U+ ∪ {0} is denoted by U≥0.
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Labels for semi-isolating formulas and labelling functions

Let ν(p, q): SICF(p, q)/SICE(p, q)→ U be injective labelling
functions, p(x), q(y) ∈ S(∅), for which negative elements
correspond to the classes in SICFA(p, q)/SICE(p, q), positive
elements and 0 correspond to the classes in
SICFE(p, q)/SICE(p, q) such that 0 is defined only for p = q and
is represented by the formula (x ≈ y), and neutral elements code
the classes in SICFM(p, q)/SICE(p, q), ν(p) 
 ν(p, p). We
additionally assume that ρν(p) ∩ ρν(q) = {0} for p 6= q where, as
usual, we denote by ρf the image of the function f ) and
ρν(p,q) ∩ ρν(p′,q′) = ∅ if p 6= q and (p, q) 6= (p′, q′). Labelling
functions with the properties above as well families of these
functions are said to be regular. Below we shall consider only
regular labelling functions and their regular families.
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Labels for semi-isolating formulas and labelling functions

The labels, corresponding to isolating formulas, are said to be
isolating whereas each label in

⋃
p,q∈S1(∅)

ρν(p,q) is semi-isolating. By

the definition, each isolating label belongs to U− ∪̇ {0} ∪̇U+, i. e.,
it is not neutral.
We denote by θp,u,q(x , y) formulas in SICF(p, q) with a label
u ∈ ρν(p,q). If the type p is fixed and p = q then the formula
θp,u,q(x , y) is denoted by θu(x , y).
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Algebra of distributions for binary semi-isolating formulas

Similarly algebras of distributions for binary isolating formulas, the
Boolean P(U) of U is the universe of an algebra A of distributions
of binary semi-isolating formulas with k-ary operations

SI(p1, ·, p2, ·, . . . , pk , ·, pk+1),

where p1, . . . , pk+1 ∈ S1(∅). This algebra has a natural restriction
to any family R ⊆ S1(∅) as well as to the algebras of distributions
of binary isolating formulas.
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Preordered algebra of distributions for binary semi-isolating
formulas

For the set U of labels in the algebra A of binary semi-isolating
formulas of theory T , we define the following relation �: if
u, v ∈ U then u � v if and only if u = v , or u, v ∈ ρν(p,q) for some
types p, q ∈ S1(∅) and θp,u,q(a, y) ` θp,v ,q(a, y) for some (any)
realization a of p. If u � v and u 6= v we write u � v .
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POSTC-algebra

The preordered algebra 〈A; �〉 equipped with binary operations
(p, (· τ ·), q), τ ∈ {∨,∧, ◦}, and (p, (· ∧ ¬ ·), q), p, q ∈ S1(∅), is
called a preordered algebra with relative set-theoretic operations
and the composition or briefly a POSTC-algebra.
We denote by Mν(R) the restriction of POSTC-algebra to the set
of labels for a non-empty family R of 1-types.
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Ranks and degrees of semi-isolation

For triples (p, u, q), where p, q ∈ S1(∅), u ∈ U ∪ {∅}, we define
inductively the rank si(p, u, q) of semi-isolation:
(1) si(p, u, q) = 0 if u /∈ ρν(p,q);
(2) si(p, u, q) ≥ 1 if u ∈ ρν(p,q);
(3) for a positive ordinal α, si(p, u, q) ≥ α + 1 if there is a set
{vi | i ∈ ω} of pairwise inconsistent labels such that vi � u and
si(p, vi , q) ≥ α, i ∈ ω;
(4) for a limit ordinal α, si(p, u, q) ≥ α if si(p, u, q) ≥ β for any
β ∈ α.
As usual, we write si(p, u, q) = α if si(p, u, q) ≥ α and
si(p, u, q) 6≥ β for α ∈ β; si(p, u, q) 
∞ if si(p, u, q) ≥ α for any
ordinal α.
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Ranks and degrees of semi-isolation

If types p and q are fixed, we write si(u) instead of si(p, u, q) and
this value is said to be the rank of semi-isolation or the si-rank of
the label u or of the element u = ∅ (with respect to the pair
(p, q)). For a formula θp,u,q(x , y) we set si(θp,u,q(x , y)) 
 si(u).

Clearly, if the theory is small then the si-rank of any label is an
ordinal (having a label u with si(p, u, q) =∞, we get continuum
many complete types r(x , y) ⊃ p(x) ∪ q(y)).

PROPOSITION
Each si-rank in a theory T is either equal to ∞ or less than
min{|T |+, (MR(x ≈ x) + 1)+}. If Morley rank MR(x ≈ x) is equal
to an ordinal α then any si-rank in T is not more than α + 1.

Similarly Morley degree we define degrees of semi-isolation for
labels.
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Hierarchy of structures

In the following Figure, the fragments of Hasse diagram are
presented illustrating the links of the structure SI 
 SIν(p) with
structures above, being restrictions of SI to subalphabets of U.
Here the superscripts ·≤0 and ·≥0 point out on restrictions of SI to
the sets U≤0 and U≥0 respectively, and the subscripts to the upper
estimates for si-ranks and si-degrees of labels. In Figure 1, a, a
hierarchy of structures SIα, α ≤ si(p), is depicted starting with
the trivial substructure; in Figure 1, b, links between substructures
of SIν(p),1 are presented; in Figure 1, c, links between
substructures of SIα+1 for 1 ≤ α < si(p) are shown. For a limit
ordinal β ≤ si(p), the Hasse diagram for substructures of SIβ is
obtained by union of presented diagrams for α < β. If an ordinal
β ≤ si(p) is not limit, the Hasse diagram corresponds to the union
of presented diagrams for α < β with the removal of structures
SI≤0

β+1,2 and SI≥0
β+1,2.
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Hierarchy of structures
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POSTC-monoids

Similarly I -groupoids we axiomatize the class of POSTC-monoids
producing binary semi-isolating structures for 1-types and for
families of 1-types.

THEOREM
For any (at most countable and having an ordinal
sup{si(u) | u ∈ U})) POSTC-monoid M there is a (small) theory
T with a type p(x) ∈ S(T ) and a regular labelling function ν(p)
such that Mν(p) = M.
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Absorbing and almost absorbing structures

Now we define some opposite cases to determinacies.
An IR-structure Pν(R) is n-absorbing, for n ∈ ω \ {0}, if whenever
u1, . . . , un are nonzero labels in ρν(p1,p2), . . . , ρν(pn,pn+1)

respectively, p1, . . . , pn+1 ∈ R, the following conditions hold:
• if some ui is negative then P(p1, u1, p2, u2, . . . , un, pn+1) is equal
to the set ρ−ν(p1,pn+1)

of all negative labels in ρν(p1,pn+1);
• if all ui are positive then P(p1, u1, p2, u2, . . . , un, pn+1) contains
the set ρ+

ν(p1,pn+1)
of all positive labels in ρν(p1,pn+1) (i. e.,

P(p1, u1, p2, u2, . . . , un, pn+1) = ρ+
ν(p1,pn+1)

or
P(p1, u1, p2, u2, . . . , un, pn+1) = ρ+

ν(p1,pn+1)
∪ {0}).
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Absorbing and almost absorbing structures

An IR-structure Pν(R) is almost n-absorbing, for n ∈ ω \ {0}, if
whenever u1, . . . , un are nonzero labels in ρν(p1,p2), . . . , ρν(pn,pn+1)

respectively, p1, . . . , pn+1 ∈ R, the following conditions hold:
• if some ui is negative then
P(p1, u1, p2, u2, . . . , un, pn+1) \ ρ−ν(p1,pn+1)

is finite;
• if all ui are positive then
P(p1, u1, p2, u2, . . . , un, pn+1) \ ρ+

ν(p1,pn+1)
is finite.
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Absorbing and almost absorbing structures

A POSTCR-structure M is n-absorbing, for n ∈ ω \ {0}, if
whenever u1, . . . , un are nonzero labels in ρν(p1,p2), . . . , ρν(pn,pn+1)

respectively, p1, . . . , pn+1 ∈ R, the following conditions hold:
• if some ui is negative then SI(p1, u1, p2, u2, . . . , un, pn+1) is equal
to the set ρ−ν(p1,pn+1)

of all negative labels in ρν(p1,pn+1);
• if all ui are positive then SI(p1, u1, p2, u2, . . . , un, pn+1) contains
the set ρ+

ν(p1,pn+1)
of all negative labels in ρν(p1,pn+1);

• if the labels ui are positive or belong to U ′ and some ui belongs
to U ′ then SI(p1, u1, p2, u2, . . . , un, pn+1) contains the set
(ρ+
ν(p1,pn+1)

)′ of all labels of U+ ∪ U ′ laying in ρν(p1,pn+1).
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Absorbing and almost absorbing structures

A POSTCR-structure M is almost n-absorbing, for n ∈ ω \ {0}, if
whenever u1, . . . , un are nonzero labels in ρν(p1,p2), . . . , ρν(pn,pn+1)

respectively, p1, . . . , pn+1 ∈ R, the following conditions hold:
• if some ui is negative then
SI(p1, u1, p2, u2, . . . , un, pn+1) \ ρ−ν(p1,pn+1)

is finite;
• if all ui are positive then
SI(p1, u1, p2, u2, . . . , un, pn+1) \ ρ+

ν(p1,pn+1)
is finite;

• if the labels ui are positive or belong to U ′ and some ui belongs
to U ′ then SI(p1, u1, p2, u2, . . . , un, pn+1) \ (ρ−ν(p1,pn+1)

)′ is finite.
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Hierarchy of absorbing structures

PROPOSITION
For all n ∈ ω \ {0}, if an associative structure M is (almost)
n-absorbing then M is (almost) (n + 1)-absorbing.
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Hierarchy of absorbing structures

Now we denote by AbIR,n (AbSIR,n, AAbIR,n, AAbSIR,n,
respectively) the class of associative n-absorbing IR-structures
(n-absorbing SIR-structures, almost n-absorbing IR-structures,
almost n-absorbing SIR-structures). By Proposition, we have
inclusions AbIR,n ⊆ AAbIR,n, AbSIR,n ⊆ AAbSIR,n,
AbIR,n ⊆ AbIR,n+1, AbSIR,n ⊆ AbSIR,n+1,
AAbIR,n ⊆ AAbIR,n+1, AAbSIR,n ⊆ AAbSIR,n+1, n ∈ ω \ {0}.

All these inclusions are strict.
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Powerful graphs

Let Γ = 〈X ,Q〉 be a graph, and a be a vertex of Γ. Recall that the
set 5Q(a) =

⋃
n∈ω

Qn(a, Γ) (respectively 4Q(a) =
⋃

n∈ω
Qn(Γ, a)) is a

upper (lower) Q-cone of a. We call the Q-cones 5Q(a) and 4Q(a)
by cones and denote by 5(a) and 4(a) respectively if Q is fixed.
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Powerful graphs

A countable acyclic directed graph Γ = 〈X ;Q〉 is said to be
powerful if the following conditions hold:
(a) the automorphism group of Γ is transitive, that is any two
vertices are connected by an automorphism;
(b) the formula Q(x , y) is equivalent in the theory Th(Γ) to
a disjunction of principal formulas;
(c) acl({a}) ∩4Q(a) = {a} for each vertex a ∈ X ;
(d) Γ |= ∀x , y ∃z (Q(z , x) ∧ Q(z , y)) (the pairwise intersection
property).
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Special structures

It is known that powerful graphs as well as, in fact, associated
structures Pν(p) play a key role for the constructions of series of
Ehrenfeucht theories.
Recall that a monoid Pν(p) is special if ρν(p) ∩ U− 6= ∅ and for any
elements u1, u2, . . . , un, v ∈ ρν(p), where u1 < 0, . . . , un < 0, v ≥ 0,
and for any element u′ ∈ u1u2 . . . unv there is an element v ′ ≥ 0
such that u′ ∈ v ′u1u2 . . . un.
A special monoid Pν(p) is called PIP-special if each negative
element u ∈ ρν(p) is a PIP-element, i. e., u ∈ uv for any v ∈ ρν(p).
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Special structures and theories

Having a special monoid (for a special small theory T ) the process
of construction of a limit model over a type p is reduced to a
sequence of θun -extensions, un < 0, n ∈ ω, of prime models over
realizations of p: for any limit modelM over p there is an
elementary chain (M(an))n∈ω, |= p(ān), such that its union forms
M and |= θun(an+1, an) is satisfied, n ∈ ω. In this case the
isomorphism type ofM is defined by the sequence (un)n∈ω.
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Special structures and theories

If a PIP-special monoid exists then, by adding of multiplace
predicates, each prime model over a tuple of realizations of p is
transformed to a model isomorphic toMp. Thus, the type p is
connected with the unique, up to isomorphism, prime model over
realizations of p and with some (finite, countable, or continuum)
number of limit models over p, which is defined by some quotient
for the set of sequences (un)n∈ω, un ∈ U− ∩ ρν(p), n ∈ ω. The
action of these quotients is defined by some identifications
(w ≈ w ′) of words in the alphabet U− ∩ ρν(p) such that if
w = u1 . . . um and w ′ = u′1 . . . u

′
n then for any v ∈ U≥0 ∩ ρν(p) and

u0 ∈ u1 . . . umv there exists v ′ ∈ U≥0 ∩ ρν(p) with
u0 ∈ v ′u′1u

′
2 . . . u

′
n.
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Definable sets of labels and the strict order property

Let T be a theory with a type p having the modelMp, Pν(p) be
an Iν(p)-groupoid, and X be a subset of ρν(p) having a cardinality
λ. We say that X is (formula) definable if for a realization a of p
the set of solutions of Lλ+,ω-formula ϕ(a, y) =

∨
u∈X

θu(a, y) inMp

is Lω,ω-definable inMp by a formula ψ(a, y). In this case we say
that the formula ψ(x , y) witnesses definability of X .
A groupoid Pν(p) generates the strict order property if for some
definable set X ⊆ ρν(p), for a witnessing formula ϕ(x , y), and for
some realizations a and b of p satisfying |= θv (b, a) with a label
v ∈ ρν(p), the inclusion ϕ(a,Mp) ⊂ ϕ(b,Mp) holds.
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Special structures without the strict order property

The following theorem shows that assuming the non-validity of the
strict order property (i.e., with NSOP), we can not construct a
special monoid Pν(p) being almost deterministic, with bounded
cardinalities for products u1 . . . um, or almost absorbing. Hence,
these monoids can not be too small or too large with respect to
their operations.

THEOREM
If T is a small theory with a type p, and a special monoid Pν(p) is
almost deterministic, with a constant C bounding cardinalities of
sets u1 . . . um, or almost n-absorbing for some n, then Pν(p)

generates the strict order property.
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Structures for acyclic graphs

THEOREM (E. V. Ovchinnikova – S.)

If T is a theory of an acyclic graph 〈M;Q〉 with some unary
predicates, a 1-type p(x), and a deterministic algebra Pν(p), then
Pν(p) is generated by a free product
∗i∈I Zi ∗ ∗j∈JZ2,j ∗ ∗k∈K 〈ω∗k ; +〉 for some copies Zi of group Z,
copies Z2,j of group Z2, and copies 〈ω∗k ; +〉 of monoid 〈ω∗; +〉. If
there are 〈ω∗k ; +〉 then the type p is not isolated.
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Structures for acyclic graphs

PROPOSITION (E. V. Ovchinnikova – S.)

For any theory T of an acyclic graph with bounded diameter and
with unary predicates, for a nonempty family R of types in S1(T )
and a regular family ν(R) of labelling functions, the structure
Pν(R) is almost deterministic.
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Examples

I. If |ρν(p)| = 1 then (x ≈ y) is the unique principal formula up to
equivalence. It is possible only in the following cases:
(1) T is small (i. e., with countable S(∅)) and satisfies some of the
following condition:
(a) p(x) is a principal type with the only realization;
(b) p(x) is a non-principal type such that if a set
{ϕ(a, y) ∧ ¬(a ≈ y)} ∪ p(y) is consistent, where ϕ(x , y) is a
formula of T , |= p(a), then ϕ(a, y) 6` p(y);
(2) T is a theory with continuum many types and for any formula
ϕ(x , y) of T and for a realization a of p(x) if the set
{ϕ(a, y) ∧ ¬(a ≈ y)} ∪ p(y) is consistent and ϕ(a, y) ` p(y) then
there are no isolating formulas ψ(a, y) such that
ψ(a, y) ` ϕ(a, y) ∧ ¬(a ≈ y).
The case 1,a is represented by a type being realized by a constant;
the cases 1,b and 2 are represented by theories of unary predicates
with non-principal types p(x) and having countably many and
continuum many types respectively.
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Examples

II. Let ρν(p) = {0, 1}. Then 1−1 = 1 and any realization a of p is
linked with the only realization b of p for which |= θ1(a, b) and,
moreover, |= θ1(b, a). Then the set of realizations of p splits on
two-element equivalence classes consisting of θ1-edges. If p is a
principal type of a small theory then a θ1-edge is unique, and if p is
non-principal the number of this edges can vary from 1 to the
infinity depending on a model of a theory.
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Examples

III. Let ρν(p) = {−1, 0} be a set for a small theory T . By
non-symmetric semi-isolation, the type p(x) is non-principal and
the formula θ−1(x , y) witnesses that SIp is non-symmetric. The
formula θ−1,−1(x , y) 
 ∃z(θ−1(x , z) ∧ θ−1(z , y)) is also witnessing
that SIp is non-symmetric. By assumption the formula θ−1,−1(a, y)
is equivalent to the formula θ−1(a, y). It means that, on a set of
realizations of p, the relation described by the formula
θ−1(x , y) ∨ (x ≈ y) is an infinite partial order. This partial order is
dense since if the element a has a covering element then the
formula θ−1(a, y) is equivalent to the disjunction of consistent
formulas θ−1(a, y) ∧ θ−1,−1(a, y) and θ−1(a, y) ∧ ¬θ−1,−1(a, y),
but it is impossible for the principal formula θ−1(a, y).
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Examples

We consider, as a theory with ρν(p) = {−1, 0}, the Ehrenfeucht’s
theory T , i. e. the theory of a structureM, formed from the
structure 〈Q;<〉 by adding constants ck , ck < ck+1, k ∈ ω, such
that lim

k→∞
ck =∞. The type p(x), isolated by the set of formulas

ck < x , k ∈ ω, has exactly two non-equivalent isolating formulas:
θ−1(a, y) = (a < y) and θ0(a, y) = (a ≈ y), where |= p(a).
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IV. Let ρν(p) = {−1, 0, 1}. Realizing this equation, we consider the
Ehrenfeucht’s example, where each element a is replaced by an
<-antichain consisting of two elements a′ and a′′ such that
|= θ1(a′, a′′) ∧ θ1(a′′, a′). Then we have the following equations for
the type p(x) isolated by the set of formulas c ′k < x , k ∈ ω:
Pp(−1,−1) = Pp(−1, 1) = Pp(1,−1) = {−1}, Pp(1, 1) = {0}.
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Examples

V. The equation ρν(p) = {−2,−1, 0} with Pp(−2,−2) = {−2} and

Pp(−2,−1) = Pp(−1,−2) = Pp(−1,−1) = {−1}

can be fulfilled by two dense strict orders <1 and <2 on a set of
realizations of a non-principal type such that <1 immerses <2:
<1 ◦ <2 = <2 ◦ <1 = <1.
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Examples

VI. Consider a dense linearly ordered setM = 〈Q, <〉,
T = Th(M), and the unique 1-type p of T . Define a labelling
function ν(p), for which 0 corresponds to the formula (x ≈ y), 1 to
(x < y), and 2 to (y < x). We have ρν(p) = {0, 1, 2},
Pp(1, 2) = Pp(2, 1) = ρν(p), Pp(1, 1) = {1}, Pp(2, 2) = {2}.
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VII. Take a group 〈G ; ∗〉 and define, on the set G binary predicates
Qg , g ∈ G , by the following rule:

Qg = {(a, b) ∈ G 2 | a ∗ g = b}.

If p(x) is a type (of a theory T ) realized in any modelM |= T
containing G exactly by elements in G connected by definable
relations Qg , then the type p is isolated, the set G is finite, and
ρν(p) consists of non-negative elements bijective with elements in
G . If ρν(p) consists of non-negative elements, is bijective with G ,
and the set of realizations of a principal type p is not fixed, then,
assuming the smallness of the theory, the set G is infinite and the
number of connected components with respect to the relation
Q 


⋃
g∈G

Qg is not bounded. At last if the type p is not isolated

then the number of Q-components on sets of realizations of p is
also unbounded although the set G can be finite.
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Examples

The Cayley table of the group 〈G ; ∗〉 defines operations Pp(·, . . . , ·)
on the set ρν(p) in accordance with links between the relations Qg .
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VIII. Applying to a concrete group we consider the structure
M
 〈Z; s(1)〉 with the unary successor function s: Z↔ Z, where
s(n) = n + 1 for each n ∈ Z. For the unique 1-type p of the theory
Th(M) the set of pairwise non-equivalent formulas θu(x , y) is
exhausted by the list: y ≈ s . . . s︸ ︷︷ ︸

n times

(x) and x ≈ s . . . s︸ ︷︷ ︸
n times

(y), n ∈ ω. The

set ρν(p) consists of non-negative elements linked by additive group
of integers.
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IX. We set T 
 Th((Q;<, cn, c ′n)n∈ω, where < is an ordinary strict
order on the set Q of rationals, constants cn form a strictly
increasing sequence, and constants c ′n form a strictly decreasing
sequence, cn < c ′n, n ∈ ω. The theory T has six pairwise
non-isomorphic countable models:
• a prime model with empty set of realizations of type p(x) isolated
by the set {cn < x | n ∈ ω} ∪ {x < c ′n | n ∈ ω};
• a prime model over a realization of p(x), with a unique
realization of this type;
• a prime model over a realization of type q(x , y) isolated by the
set p(x) ∪ p(y) ∪ {x < y}; here the set of realizations of q(x , y)
forms a closed interval [a, b];
• three limit models over the type q(x , y), in which the sets of
realizations of q(x , y) are intervals of forms (a, b], [a, b), (a, b)
respectively.
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Consider the type q(x , y). Taking the formula ϕ(x1, x2, y1, y2)
defined by x1 ≤ y1 < y2 ≤ x2 we get

ϕ(x1, x2, y1, y2) ≡
−3∨
i=0

θi (x1, x2, y1, y2),

where θ0(x1, x2, y1, y2) = (x1 ≈ y1 < y2 ≈ x2),
θ−1(x1, x2, y1, y2) = (x1 < y1 < y2 ≈ x2),
θ−2(x1, x2, y1, y2) = (x1 ≈ y1 < y2 < x2),
θ−3(x1, x2, y1, y2) = (x1 < y1 < y2 < x2). The following Cayley
table illustrates the algebra of isolating formulas for q(x , y):

Pq 0 −1 −2 −3
0 0 −1 −2 −3
−1 −1 −1 −3 −3
−2 −2 −3 −2 −3
−3 −3 −3 −3 −3
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X. Consider an arbitrary λ-cube C . It is known that all isolating
formulas θu(a, y), linking elements in C , are represented by
dk(a, y), where k is the distance between a and b for |= dk(a, b).
Assuming that each label u is denoted by a natural number,
defining that distance, for the unique 1-type p and labels m, n ∈ ω
the set Pp(m, n) consists of all numbers

|m +
n∑

i=1

(−1)δi |,

where each δi is equal to 0 or 1. If the cardinality λ is finite then we
choose only numbers that do not exceed 2λ.
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