STRUCTURES OF DISTRIBUTIONS OF BINARY SEMI-ISOLATING FORMULAS: (1) DETERMINISTIC AND ABSORBING STRUCTURES, (2) STRUCTURES FOR ACYCLIC GRAPHS (with E.V. Ovchinnikova)

S.V. Sudoplatov

Sobolev Institute of Mathematics, Novosibirsk State Technical University, Novosibirsk State University

9th Panhellenic Logic Symposium Athens, July 16, 2013

S.V. Sudoplatov STRUCTURES OF DISTRIBUTIONS FOR FORMULAS

Definition (A. Pillay). Let \mathcal{M} be a model of a theory T, \bar{a} and \bar{b} be tuples in \mathcal{M} , A be a subset of M. The tuple \bar{a} semi-isolates the tuple \bar{b} over the set A if there exists a formula $\varphi(\bar{a}, \bar{y}) \in \operatorname{tp}(\bar{b}/A\bar{a})$ for which $\varphi(\bar{a}, \bar{y}) \vdash \operatorname{tp}(\bar{b}/A)$ holds.

In this case we say that the formula $\varphi(\bar{a}, \bar{y})$ (with parameters in A) witnesses that \bar{b} is semi-isolated over \bar{a} with respect to A.

Similarly, a tuple \bar{a} isolates a tuple \bar{b} over A if there exists a formula $\varphi(\bar{a}, \bar{y}) \in \operatorname{tp}(\bar{b}/A\bar{a})$ for which $\varphi(\bar{a}, \bar{y}) \vdash \operatorname{tp}(\bar{b}/A)$ and $\varphi(\bar{a}, \bar{y})$ is a principal (i. e., isolating) formula.

In this case we say that the formula $\varphi(\bar{a}, \bar{y})$ (with parameters in A) witnesses that \bar{b} is isolated over \bar{a} with respect to A.

If \bar{a} (semi-)isolates \bar{b} over \varnothing , we simply say that \bar{a} (semi-)isolates \bar{b} ; and if a formula $\varphi(\bar{a}, \bar{y})$ witnesses that \bar{a} (semi-)isolates \bar{b} over \varnothing then we say that $\varphi(\bar{a}, \bar{y})$ witnesses that \bar{a} (semi-)isolates \bar{b} . For a family $R \subset S(T)$ of 1-types we denote by I_R (in \mathcal{M}) the set

 $\{(a, b) \mid \operatorname{tp}(a), \operatorname{tp}(b) \in R \text{ and } a \text{ isolates } b\}$

and by SI_R (in \mathcal{M}) the set

 $\{(a, b) \mid tp(a), tp(b) \in R \text{ and } a \text{ semi-isolates } b\}.$

Clearly, $I_R \subseteq SI_R$ and, for any set of realizations of types in R, the relations I_R and SI_R are reflexive. The relation of semi-isolation on the set of tuples in an arbitrary model is transitive and, in particular, any relation SI_R is transitive. At the same time I_R may be non-transitive.

$$I_p \rightleftharpoons I_{\{p\}}, \ \operatorname{SI}_p \rightleftharpoons \operatorname{SI}_{\{p\}}.$$

Let *T* be a complete theory, $\mathcal{M} \models T$. Consider types $p(x), q(y) \in S(\emptyset)$, realized in \mathcal{M} , and all (p, q)-preserving (p, q)-semi-isolating, $(p \rightarrow q)$ -, or $(q \leftarrow p)$ -formulas $\varphi(x, y)$ of *T*, i. e., formulas for which there is $a \in M$ such that $\models p(a)$ and $\varphi(a, y) \vdash q(y)$. Now, for each such a formula $\varphi(x, y)$, we define a binary relation $R_{p,\varphi,q} \rightleftharpoons \{(a, b) \mid \mathcal{M} \models p(a) \land \varphi(a, b)\}$. If $(a, b) \in R_{p,\varphi,q}, (a, b)$ is called a (p, φ, q) -arc. If $\varphi(a, y)$ is principal (over a), the (p, φ, q) -arc (a, b) is also principal.

・ 同 ト ・ ヨ ト ・ ヨ ト

If $\varphi(x, y)$ is $(p \leftrightarrow q)$ -formula, i.e., both $(p \rightarrow q)$ - and $(q \rightarrow p)$ -formula, and $\models p(a) \cup \{\varphi(a, b)\} \cup q(b)$ then set $[a, b] \rightleftharpoons \{(a, b), (b, a)\}$ is said to be a (p, φ, q) -edge. If the (p, φ, q) -edge [a, b] consists of principal (p, φ, q) - and $(q, \varphi(y, x), p)$ -arcs then [a, b] is a principal (p, φ, q) - edge. (p, φ, q) -arcs and (p, φ, q) -edges are called arcs and edges respectively if we say about fixed or some formula $\varphi(x, y)$. If (a, b)is a principal arc and (b, a) is not a principal arc (on any formula) then (a, b) is called *irreversible*.

- 4 同 6 4 日 6 4 日 6 - 日

For types $p(x), q(y) \in S(\emptyset)$, we denote by $\operatorname{PF}(p, q)$ the set

 $\{\varphi(x,y) \mid \varphi(a,y) \text{ is a principal formula, } \varphi(a,y) \vdash q(y), \text{ where } \models p(a)\}.$

Let PE(p, q) be the set of pairs of formulas $(\varphi(x, y), \psi(x, y)) \in PF(p, q)$ such that for any (some) realization a of p the sets of solutions for $\varphi(a, y)$ and $\psi(a, y)$ coincide. Clearly, PE(p,q) is an equivalence relation on the set PF(p,q). Notice that each PE(p, q)-class E corresponds to either a principal edge or to an irreversible principal arc connecting realizations of p and q by some (any) formula in E. Thus the quotient PF(p,q)/PE(p,q) is represented as a disjoint union of sets PFS(p, q) and PFN(p, q), where PFS(p, q) consists of PE(p, q)-classes corresponding to principal edges and PFN(p, q) consists of PE(p, q)-classes corresponding to irreversible principal arcs.

Let T be a complete theory without finite models, $U = U^- \dot{\cup} \{0\} \dot{\cup} U^+$ be an alphabet of cardinality $\geq |S(T)|$ and consisting of *negative elements* $u^- \in U^-$, *positive elements* $u^+ \in U^+$, and zero 0. As usual, we write u < 0 for any $u \in U^-$ and u > 0 for any $u \in U^+$.¹ The set $U^- \cup \{0\}$ is denoted by $U^{\leq 0}$ and $U^+ \cup \{0\}$ is denoted by $U^{\geq 0}$. Elements of U are called *labels*.

¹If U is at most countable, we assume that U is a subset of the set \mathbb{Z} of integers.

Let $\nu(p,q)$: $PF(p,q)/PE(p,q) \rightarrow U$ be injective *labelling* functions, p(x), $q(y) \in S(\emptyset)$, for which negative elements correspond to the classes in PFN(p,q)/PE(p,q) and non-negative elements correspond to the classes in PFS(p,q)/PE(p,q) such that 0 is defined only for p = q and is represented by the formula $(x \approx y), \nu(p) \rightleftharpoons \nu(p, p)$. We additionally assume that $\rho_{\nu(p)} \cap \rho_{\nu(q)} = \{0\}$ for $p \neq q$ (where, as usual, we denote by ρ_f the image of the function f) and $\rho_{\nu(p,q)} \cap \rho_{\nu(p',q')} = \emptyset$ if $p \neq q$ and $(p,q) \neq (p',q')$. Labelling functions with the properties above as well families of these functions are said to be *regular*. Below we shall consider only regular labelling functions and their regular families. We denote by $\theta_{p,u,q}(x,y)$ formulas in PF(p,q) with a label $u \in \rho_{\nu(p,q)}$. If the type p is fixed and p = q then the formula $\theta_{p,u,q}(x,y)$ is denoted by $\theta_u(x,y)$.

Algebra of distributions for binary isolating formulas

For types $p_1, p_2, \ldots, p_{k+1} \in S^1(\emptyset)$ and sets $X_1, X_2, \ldots, X_k \subseteq U$ of labels we denote by

$$P(p_1, X_1, p_2, X_2, \dots, p_k, X_k, p_{k+1})$$

the set of all labels $u \in U$ corresponding to formulas $\theta_{p_1,u,p_{k+1}}(x,y)$ satisfying, for realizations *a* of p_1 and some $u_1 \in X_1, \ldots, u_k \in X_k$, the following condition:

$$\theta_{p_1,u,p_{k+1}}(a,y) \vdash \theta_{p_1,u_1,p_2,u_2,\dots,p_k,u_k,p_{k+1}}(a,y),$$

where

$$\begin{aligned} \theta_{p_1,u_1,p_2,u_2,...,p_k,u_k,p_{k+1}}(x,y) &\rightleftharpoons \\ &\rightleftharpoons \exists x_2, x_3, \ldots, x_{k-1}, x_k(\theta_{p_1,u_1,p_2}(x,x_2) \land \theta_{p_2,u_2,p_3}(x_2,x_3) \land \ldots \\ &\ldots \land \theta_{p_{k-1},u_{k-1},p_k}(x_{k-1},x_k) \land \theta_{p_k,u_k,p_{k+1}}(x_k,y)). \end{aligned}$$

Thus the Boolean $\mathcal{P}(U)$ of U is the universe of an *algebra of distributions of binary isolating formulas* with k-ary operations

$$P(p_1, \cdot, p_2, \cdot, \dots, p_k, \cdot, p_{k+1}), \quad \text{and} \quad \text{and$$

Algebra of distributions for binary isolating formulas

If each set X_i is a singleton consisting of an element u_i then we use u_i instead of X_i in $P(p_1, X_1, p_2, X_2, \dots, p_k, X_k, p_{k+1})$ and write

$$P(p_1, u_1, p_2, u_2, \ldots, p_k, u_k, p_{k+1}).$$

If all types p_i equal to a type p then we write $P_p(X_1, X_2, \ldots, X_k)$ and $P_p(u_1, u_2, \ldots, u_k)$ as well as $\lfloor X_1, X_2, \ldots, X_k \rfloor_p$ and $\lfloor u_1, u_2, \ldots, u_k \rfloor_p$ instead of

$$P(p_1, X_1, p_2, X_2, \dots, p_k, X_k, p_{k+1})$$

and

$$P(p_1, u_1, p_2, u_2, \ldots, p_k, u_k, p_{k+1})$$

respectively. We omit the index \cdot_p if the type p is fixed. In this case, we write $\theta_{u_1,u_2,...,u_k}(x, y)$ instead of $\theta_{p,u_1,p,u_2,...,p,u_k,p}(x, y)$.

THEOREM (I.V.Shulepov – S.)

For any complete theory T, any type $p \in S(T)$ having the model \mathcal{M}_p , and the regular labelling function $\nu(p)$, any operation $\mathcal{P}_p(\cdot, \cdot, \ldots, \cdot)$ on the set $\mathcal{P}(\rho_{\nu(p)}) \setminus \{\varnothing\}$ is interpretable by a term of the groupoid $\mathfrak{P}_{\nu(p)} \rightleftharpoons \langle \mathcal{P}(\rho_{\nu(p)}) \setminus \{\varnothing\}; \lfloor \cdot, \cdot \rfloor \rangle$. The groupoid $\mathfrak{P}_{\nu(p)}$ has the unit $\{0\}$ and, having right associativity, is a monoid.

A structure $\mathfrak{P}_{\nu(p)}$ is called (*almost*) *deterministic* if the set $\lfloor u_1, u_2 \rfloor$ is a singleton (is nonempty and finite) for any $u_1, u_2 \in \rho_{\nu(p)}$. Any deterministic structure $\mathfrak{P}_{\nu(p)}$ is a monoid (being almost deterministic). It is generated by the monoid $\mathfrak{P}'_{\nu(p)} = \langle \rho_{\nu(p)}; \odot \rangle$, where $\lfloor u, v \rfloor = \{u \odot v\}$ for $u, v \in \rho_{\nu(p)}$. A Hasse diagram is presented in Figure 1 illustrating the links of the structure $\mathfrak{P}_{\nu(p)}$ with structures above, being restrictions of $\mathfrak{P}_{\nu(p)}$ to subalphabets of U. Here the superscripts $\cdot^{\leq 0}$ and $\cdot^{\geq 0}$ point out on restrictions of $\mathfrak{P}_{\nu(p)}$ to the sets of non-positive and non-negative elements respectively, the subscripts \cdot_d and \cdot_{ad} indicate the sets of deterministic and almost deterministic elements; $\mathfrak{G}_{\nu(p)}$ is a submonoid of monoid $\mathfrak{P}_{\nu(p),d}$ consisting of all non-negative deterministic elements u in $\rho_{\nu(p)}$, for which u^{-1} are also deterministic;

the monoid $(\mathfrak{G}_{\nu(p)})'$ is a group.

Just $\mathfrak{P}_{\nu(p)}$ and $\mathfrak{P}_{\nu(p)}^{\leq 0}$ may not be monoids.

Hasse diagram

▶ < ≣

æ

Let $U = U^- \cup \{0\} \cup U^+$ be an alphabet consisting of a set U^- of *negative elements*, a set U^+ of *positive elements*, and zero 0. As above we write u < 0 for any element $u \in U^-$, u > 0 for any element $u \in U^+$, and $u \cdot v$ instead of $\{u\} \cdot \{v\}$ considering an operation \cdot on the set $\mathcal{P}(U) \setminus \{\varnothing\}$.

I-groupoids

A groupoid $\mathfrak{P} = \langle \mathcal{P}(U) \setminus \{ \varnothing \}; \cdot \rangle$ is called an *I-groupoid* if it satisfies the following conditions:

• the set $\{0\}$ is the unit of the groupoid \mathfrak{P} ;

• the operation \cdot of the groupoid \mathfrak{P} is generated by the function \cdot on elements in U such that every elements $u, v \in U$ define a nonempty set $(u \cdot v) \subseteq U$: for any sets $X, Y \in \mathcal{P}(U) \setminus \{\varnothing\}$ the following equality holds:

$$X \cdot Y = \bigcup \{x \cdot y \mid x \in X, y \in Y\};$$

• if u < 0 then the sets $u \cdot v$ and $v \cdot u$ consist of negative elements for any $v \in U$;

A (B) < (B) < (B) < (B) </p>

• if u > 0 and v > 0 then the set $u \cdot v$ consists of non-negative elements;

• for any u > 0 there is the unique *inverse* element $u^{-1} > 0$ such that $0 \in (u \cdot u^{-1}) \cap (u^{-1} \cdot u)$;

• if a positive element u belongs to a set $v_1 \cdot v_2$ then u^{-1} belongs to $v_2^{-1} \cdot v_1^{-1}$;

• for any elements $u_1, u_2, u_3 \in U$ the following inclusion holds:

$$(u_1 \cdot u_2) \cdot u_3 \supseteq u_1 \cdot (u_2 \cdot u_3),$$

and the strict inclusion

$$(u_1 \cdot u_2) \cdot u_3 \supset u_1 \cdot (u_2 \cdot u_3)$$

may be satisfied only for $u_1 < 0$ and $|u_2 \cdot u_3| \ge \omega$;

• the groupoid \mathfrak{P} contains the *deterministic* subgroupoid $\mathfrak{P}_d^{\geq 0}$ (being a monoid) with the universe $\mathcal{P}(U_d^{\geq 0}) \setminus \{\varnothing\}$, where

$$U_d^{\geq 0} = \{ u \in U^{\geq 0} \mid u^{-1} \cdot u = \{0\} \};$$

any set $u \cdot v$ is a singleton for $u, v \in U_d^{\geq 0}$.

By the definition each *I*-groupoid \mathfrak{P} contains *I*-subgroupoids $\mathfrak{P}^{\leq 0}$ and $\mathfrak{P}^{\geq 0}$ with the universes $\mathcal{P}(U^- \cup \{0\}) \setminus \{\varnothing\}$ and $\mathcal{P}(U^+ \cup \{0\}) \setminus \{\varnothing\}$ respectively. The structure $\mathfrak{P}^{\geq 0}$ is a monoid.

THEOREM (I.V.Shulepov – S.)

For any (at most countable) I-groupoid \mathfrak{P} , there is a (small) theory T with a type $p(x) \in S(T)$ and a regular labelling function $\nu(p)$ such that $\mathfrak{P}_{\nu(p)} = \mathfrak{P}$.

A (1) > (1) > (1) > (1)

The results are generalized for arbitrary family of 1-types forming partial groupoids of isolating formulas.

$\mathrm{SICF}(p,q)$

For types $p(x), q(y) \in S(\emptyset)$, we denote by SICF(p, q) the set of $(p \rightarrow q)$ -formulas $\varphi(x, y)$ such that $\{\varphi(a, y)\}$ is consistent for $\models p(a)$. Let SICE(p, q) be the set of pairs of formulas $(\varphi(x, y), \psi(x, y)) \in SICF(p, q)$ such that for any (some) realization a of p the sets of solutions for $\varphi(a, y)$ and $\psi(a, y)$ coincide. Clearly, SICE(p, q) is an equivalence relation on the set SICF(p, q). Notice that each SICE(p, q)-class *E* corresponds to either a set of (p, φ, q) -edges, or a set of irreversible (p, φ, q) -arcs, or simultaneously a set of (p, φ, q) -edges and of irreversible (p, φ, q) -arcs linking realizations of p and q by any (some) formula φ in *E*. Thus the quotient SICF(p, q)/SICE(p, q) is represented as a disjoint union of sets SICFE(p, q), SICFA(p, q), and SICFM(p, q), where SICFE(p, q) consists of SICE(p, q)-classes corresponding to sets of edges, SICFA(p, q) consists of SICE(p, q)-classes corresponding to sets of irreversible arcs, and SICFM(p, q) consists of SICE(p, q)-classes corresponding to sets containing edges and irreversible arcs.

STRUCTURES OF DISTRIBUTIONS FOR FORMULAS

Let *T* be a complete theory without finite models, $U = U^- \dot{\cup} \{0\} \dot{\cup} U^+ \dot{\cup} U'$ be an alphabet of cardinality $\geq |S(T)|$ and consisting of *negative elements* $u^- \in U^-$, *positive elements* $u^+ \in U^+$, *neutral elements* $u' \in U'$, and zero 0. As usual, we write u < 0 for any $u \in U^-$ and u > 0 for any $u \in U^+$. The set $U^- \cup \{0\}$ is denoted by $U^{\leq 0}$ and $U^+ \cup \{0\}$ is denoted by $U^{\geq 0}$.

Let $\nu(p,q)$: SICF(p,q)/SICE $(p,q) \rightarrow U$ be injective *labelling*. functions, $p(x), q(y) \in S(\emptyset)$, for which negative elements correspond to the classes in SICFA(p, q)/SICE(p, q), positive elements and 0 correspond to the classes in SICFE(p,q)/SICE(p,q) such that 0 is defined only for p = q and is represented by the formula $(x \approx y)$, and neutral elements code the classes in SICFM(p, q)/SICE(p, q), $\nu(p) \rightleftharpoons \nu(p, p)$. We additionally assume that $\rho_{\nu(p)} \cap \rho_{\nu(q)} = \{0\}$ for $p \neq q$ where, as usual, we denote by ρ_f the image of the function f) and $\rho_{\nu(p,q)} \cap \rho_{\nu(p',q')} = \emptyset$ if $p \neq q$ and $(p,q) \neq (p',q')$. Labelling functions with the properties above as well families of these functions are said to be *regular*. Below we shall consider only regular labelling functions and their regular families.

The labels, corresponding to isolating formulas, are said to be isolating whereas each label in $\bigcup_{p,q\in S^1(\varnothing)} \rho_{\nu(p,q)}$ is semi-isolating. By the definition, each isolating label belongs to $U^- \dot{\cup} \{0\} \dot{\cup} U^+$, i. e., it is not neutral. We denote by $\theta_{p,u,q}(x, y)$ formulas in SICF(p, q) with a label $u \in \rho_{\nu(p,q)}$. If the type p is fixed and p = q then the formula $\theta_{p,u,q}(x, y)$ is denoted by $\theta_u(x, y)$. Similarly algebras of distributions for binary isolating formulas, the Boolean $\mathcal{P}(U)$ of U is the universe of an *algebra* \mathfrak{A} *of distributions of binary semi-isolating formulas* with *k*-ary operations

 $SI(p_1, \cdot, p_2, \cdot, \ldots, p_k, \cdot, p_{k+1}),$

where $p_1, \ldots, p_{k+1} \in S^1(\emptyset)$. This algebra has a natural restriction to any family $R \subseteq S^1(\emptyset)$ as well as to the algebras of distributions of binary *isolating* formulas.

Preordered algebra of distributions for binary semi-isolating formulas

For the set U of labels in the algebra \mathfrak{A} of binary semi-isolating formulas of theory T, we define the following relation \trianglelefteq : if $u, v \in U$ then $u \trianglelefteq v$ if and only if u = v, or $u, v \in \rho_{\nu(p,q)}$ for some types $p, q \in S^1(\varnothing)$ and $\theta_{p,u,q}(a, y) \vdash \theta_{p,v,q}(a, y)$ for some (any) realization a of p. If $u \trianglelefteq v$ and $u \neq v$ we write $u \triangleleft v$. The preordered algebra $\langle \mathfrak{A}; \trianglelefteq \rangle$ equipped with binary operations $(p, (\cdot \tau \cdot), q), \tau \in \{\lor, \land, \circ\}$, and $(p, (\cdot \land \neg \cdot), q), p, q \in S^1(\emptyset)$, is called a *preordered algebra with relative set-theoretic operations and the composition* or briefly a POSTC-algebra. We denote by $\mathfrak{M}_{\nu(R)}$ the restriction of POSTC-algebra to the set of labels for a non-empty family R of 1-types.

For triples (p, u, q), where $p, q \in S^1(\emptyset)$, $u \in U \cup \{\emptyset\}$, we define inductively the rank si(p, u, q) of semi-isolation: (1) si(p, u, q) = 0 if $u \notin \rho_{\nu(p,q)}$; (2) si(p, u, q) ≥ 1 if $u \in \rho_{\nu(p,q)}$; (3) for a positive ordinal α , si $(p, u, q) \ge \alpha + 1$ if there is a set $\{v_i \mid i \in \omega\}$ of pairwise inconsistent labels such that $v_i \triangleleft u$ and $si(p, v_i, q) > \alpha, i \in \omega;$ (4) for a limit ordinal α , si $(p, u, q) \ge \alpha$ if si $(p, u, q) \ge \beta$ for any $\beta \in \alpha$. As usual, we write $si(p, u, q) = \alpha$ if $si(p, u, q) \ge \alpha$ and $\operatorname{si}(p, u, q) \not\geq \beta$ for $\alpha \in \beta$; $\operatorname{si}(p, u, q) \rightleftharpoons \infty$ if $\operatorname{si}(p, u, q) \geq \alpha$ for any ordinal α .

If types p and q are fixed, we write si(u) instead of si(p, u, q) and this value is said to be the *rank of semi-isolation* or the si-*rank* of the label u or of the element $u = \emptyset$ (with respect to the pair (p,q)). For a formula $\theta_{p,u,q}(x, y)$ we set $si(\theta_{p,u,q}(x, y)) \rightleftharpoons si(u)$.

Clearly, if the theory is small then the si-rank of any label is an ordinal (having a label u with $si(p, u, q) = \infty$, we get continuum many complete types $r(x, y) \supset p(x) \cup q(y)$).

PROPOSITION

Each si-rank in a theory T is either equal to ∞ or less than $\min\{|T|^+, (MR(x \approx x) + 1)^+\}$. If Morley rank $MR(x \approx x)$ is equal to an ordinal α then any si-rank in T is not more than $\alpha + 1$.

Similarly Morley degree we define degrees of semi-isolation for labels.

Hierarchy of structures

In the following Figure, the fragments of Hasse diagram are presented illustrating the links of the structure $\mathfrak{SI} \rightleftharpoons \mathfrak{SI}_{\nu(p)}$ with structures above, being restrictions of \mathfrak{SI} to subalphabets of U. Here the superscripts $\cdot^{\leq 0}$ and $\cdot^{\geq 0}$ point out on restrictions of \mathfrak{SI} to the sets $U^{\leq 0}$ and $U^{\geq 0}$ respectively, and the subscripts to the upper estimates for si-ranks and si-degrees of labels. In Figure 1, a, a hierarchy of structures \mathfrak{SI}_{α} , $\alpha \leq \operatorname{si}(p)$, is depicted starting with the trivial substructure; in Figure 1, b, links between substructures of $\mathfrak{SI}_{\nu(p),1}$ are presented; in Figure 1, c, links between substructures of $\mathfrak{SI}_{\alpha+1}$ for $1 \leq \alpha < \operatorname{si}(p)$ are shown. For a limit ordinal $\beta \leq \operatorname{si}(p)$, the Hasse diagram for substructures of \mathfrak{SI}_{β} is obtained by union of presented diagrams for $\alpha < \beta$. If an ordinal $\beta < si(p)$ is not limit, the Hasse diagram corresponds to the union of presented diagrams for $\alpha < \beta$ with the removal of structures $\mathfrak{SI}_{\overline{\beta}\pm1}^{\leq 0}$ and $\mathfrak{SI}_{\overline{\beta}\pm1}^{\geq 0}$.

• • = • • = •

Hierarchy of structures

S.V. Sudoplatov STRUCTURES OF DISTRIBUTIONS FOR FORMULAS

Similarly *I*-groupoids we axiomatize the class of POSTC-monoids producing binary semi-isolating structures for 1-types and for families of 1-types.

THEOREM

For any (at most countable and having an ordinal $\sup\{si(u) \mid u \in U\}$)) POSTC-monoid \mathfrak{M} there is a (small) theory T with a type $p(x) \in S(T)$ and a regular labelling function $\nu(p)$ such that $\mathfrak{M}_{\nu(p)} = \mathfrak{M}$.

Now we define some opposite cases to determinacies.

An $I_{\mathcal{R}}$ -structure $P_{\nu(\mathcal{R})}$ is *n*-absorbing, for $n \in \omega \setminus \{0\}$, if whenever u_1, \ldots, u_n are nonzero labels in $\rho_{\nu(p_1,p_2)}, \ldots, \rho_{\nu(p_n,p_{n+1})}$ respectively, $p_1, \ldots, p_{n+1} \in \mathcal{R}$, the following conditions hold: • if some u_i is negative then $P(p_1, u_1, p_2, u_2, \ldots, u_n, p_{n+1})$ is equal to the set $\rho_{\nu(p_1,p_{n+1})}^-$ of all negative labels in $\rho_{\nu(p_1,p_{n+1})}$; • if all u_i are positive then $P(p_1, u_1, p_2, u_2, \ldots, u_n, p_{n+1})$ contains the set $\rho_{\nu(p_1,p_{n+1})}^+$ of all positive labels in $\rho_{\nu(p_1,p_{n+1})}$ (i. e., $P(p_1, u_1, p_2, u_2, \ldots, u_n, p_{n+1}) = \rho_{\nu(p_1,p_{n+1})}^+$ or $P(p_1, u_1, p_2, u_2, \ldots, u_n, p_{n+1}) = \rho_{\nu(p_1,p_{n+1})}^+ \cup \{0\}$).

• • = • • = •

An $I_{\mathcal{R}}$ -structure $P_{\nu(\mathcal{R})}$ is almost *n*-absorbing, for $n \in \omega \setminus \{0\}$, if whenever u_1, \ldots, u_n are nonzero labels in $\rho_{\nu(p_1, p_2)}, \ldots, \rho_{\nu(p_n, p_{n+1})}$ respectively, $p_1, \ldots, p_{n+1} \in \mathcal{R}$, the following conditions hold: • if some u_i is negative then $P(p_1, u_1, p_2, u_2, \ldots, u_n, p_{n+1}) \setminus \rho_{\nu(p_1, p_{n+1})}^-$ is finite; • if all u_i are positive then $P(p_1, u_1, p_2, u_2, \ldots, u_n, p_{n+1}) \setminus \rho_{\nu(p_1, p_{n+1})}^+$ is finite. A POSTC_{*R*}-structure \mathfrak{M} is *n*-absorbing, for $n \in \omega \setminus \{0\}$, if whenever u_1, \ldots, u_n are nonzero labels in $\rho_{\nu(p_1, p_2)}, \ldots, \rho_{\nu(p_n, p_{n+1})}$ respectively, $p_1, \ldots, p_{n+1} \in \mathcal{R}$, the following conditions hold: • if some u_i is negative then SI $(p_1, u_1, p_2, u_2, \dots, u_n, p_{n+1})$ is equal to the set $\rho_{\nu(p_1,p_{n+1})}^-$ of all negative labels in $\rho_{\nu(p_1,p_{n+1})}$; • if all u_i are positive then SI $(p_1, u_1, p_2, u_2, \ldots, u_n, p_{n+1})$ contains the set $\rho^+_{\nu(p_1,p_{n+1})}$ of all negative labels in $\rho_{\nu(p_1,p_{n+1})}$; • if the labels u_i are positive or belong to U' and some u_i belongs to U' then SI $(p_1, u_1, p_2, u_2, \ldots, u_n, p_{n+1})$ contains the set $(\rho_{\nu(p_1,p_{n+1})}^+)'$ of all labels of $U^+ \cup U'$ laying in $\rho_{\nu(p_1,p_{n+1})}$.

・ 「 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・

A POSTC_R-structure \mathfrak{M} is almost n-absorbing, for $n \in \omega \setminus \{0\}$, if whenever u_1, \ldots, u_n are nonzero labels in $\rho_{\nu(p_1, p_2)}, \ldots, \rho_{\nu(p_n, p_{n+1})}$ respectively, $p_1, \ldots, p_{n+1} \in \mathcal{R}$, the following conditions hold: • if some u_i is negative then SI $(p_1, u_1, p_2, u_2, \ldots, u_n, p_{n+1}) \setminus \rho_{\nu(p_1, p_{n+1})}^-$ is finite; • if all u_i are positive then SI $(p_1, u_1, p_2, u_2, \ldots, u_n, p_{n+1}) \setminus \rho_{\nu(p_1, p_{n+1})}^+$ is finite; • if the labels u_i are positive or belong to U' and some u_i belongs to U' then SI $(p_1, u_1, p_2, u_2, \ldots, u_n, p_{n+1}) \setminus (\rho_{\nu(p_1, p_{n+1})}^-)'$ is finite.

PROPOSITION

For all $n \in \omega \setminus \{0\}$, if an associative structure \mathfrak{M} is (almost) *n*-absorbing then \mathfrak{M} is (almost) (n + 1)-absorbing.

S.V. Sudoplatov STRUCTURES OF DISTRIBUTIONS FOR FORMULAS

Now we denote by $AbI_{\mathcal{R},n}$ ($AbSI_{\mathcal{R},n}$, $AAbI_{\mathcal{R},n}$, $AAbSI_{\mathcal{R},n}$, respectively) the class of associative *n*-absorbing $I_{\mathcal{R}}$ -structures (*n*-absorbing $SI_{\mathcal{R}}$ -structures, almost *n*-absorbing $I_{\mathcal{R}}$ -structures, almost *n*-absorbing $SI_{\mathcal{R}}$ -structures). By Proposition, we have inclusions $AbI_{\mathcal{R},n} \subseteq AAbI_{\mathcal{R},n}$, $AbSI_{\mathcal{R},n} \subseteq AAbSI_{\mathcal{R},n}$, $AbI_{\mathcal{R},n} \subseteq AbI_{\mathcal{R},n+1}$, $AbSI_{\mathcal{R},n} \subseteq AbSI_{\mathcal{R},n+1}$, $AAbI_{\mathcal{R},n} \subseteq AAbI_{\mathcal{R},n+1}$, $AAbSI_{\mathcal{R},n} \subseteq AAbSI_{\mathcal{R},n+1}$, $n \in \omega \setminus \{0\}$.

All these inclusions are strict.

Let $\Gamma = \langle X, Q \rangle$ be a graph, and *a* be a vertex of Γ . Recall that the set $\bigtriangledown_Q(a) = \bigcup_{n \in \omega} Q^n(a, \Gamma)$ (respectively $\bigtriangleup_Q(a) = \bigcup_{n \in \omega} Q^n(\Gamma, a)$) is a *upper (lower) Q*-cone of *a*. We call the *Q*-cones $\bigtriangledown_Q(a)$ and $\bigtriangleup_Q(a)$ by *cones* and denote by $\bigtriangledown(a)$ and $\bigtriangleup(a)$ respectively if *Q* is fixed.

A countable acyclic directed graph $\Gamma = \langle X; Q \rangle$ is said to be *powerful* if the following conditions hold:

(a) the automorphism group of Γ is *transitive*, that is any two vertices are connected by an automorphism;

(b) the formula Q(x, y) is equivalent in the theory $Th(\Gamma)$ to a disjunction of principal formulas;

(c) $\operatorname{acl}(\{a\}) \cap \bigtriangleup_Q(a) = \{a\}$ for each vertex $a \in X$; (d) $\Gamma \models \forall x, y \exists z (Q(z, x) \land Q(z, y))$ (the *pairwise intersection property*). It is known that powerful graphs as well as, in fact, associated structures $\mathfrak{P}_{\nu(p)}$ play a key role for the constructions of series of Ehrenfeucht theories.

Recall that a monoid $\mathfrak{P}_{\nu(p)}$ is *special* if $\rho_{\nu(p)} \cap U^- \neq \emptyset$ and for any elements $u_1, u_2, \ldots, u_n, v \in \rho_{\nu(p)}$, where $u_1 < 0, \ldots, u_n < 0, v \ge 0$, and for any element $u' \in u_1 u_2 \ldots u_n v$ there is an element $v' \ge 0$ such that $u' \in v' u_1 u_2 \ldots u_n$.

A special monoid $\mathfrak{P}_{\nu(p)}$ is called PIP-special if each negative element $u \in \rho_{\nu(p)}$ is a PIP-element, i. e., $u \in uv$ for any $v \in \rho_{\nu(p)}$.

Having a special monoid (for a special small theory T) the process of construction of a limit model over a type p is reduced to a sequence of θ_{u_n} -extensions, $u_n < 0$, $n \in \omega$, of prime models over realizations of p: for any limit model \mathcal{M} over p there is an elementary chain $(\mathcal{M}(a_n))_{n\in\omega}$, $\models p(\bar{a}_n)$, such that its union forms \mathcal{M} and $\models \theta_{u_n}(a_{n+1}, a_n)$ is satisfied, $n \in \omega$. In this case the isomorphism type of \mathcal{M} is defined by the sequence $(u_n)_{n\in\omega}$.

If a PIP-special monoid exists then, by adding of multiplace predicates, each prime model over a tuple of realizations of p is transformed to a model isomorphic to \mathcal{M}_p . Thus, the type p is connected with the unique, up to isomorphism, prime model over realizations of p and with some (finite, countable, or continuum) number of limit models over p, which is defined by some quotient for the set of sequences $(u_n)_{n \in \omega}$, $u_n \in U^- \cap \rho_{\nu(p)}$, $n \in \omega$. The action of these quotients is defined by some identifications $(w \approx w')$ of words in the alphabet $U^- \cap \rho_{\nu(p)}$ such that if $w = u_1 \dots u_m$ and $w' = u'_1 \dots u'_n$ then for any $v \in U^{\geq 0} \cap \rho_{\nu(p)}$ and $u_0 \in u_1 \dots u_m v$ there exists $v' \in U^{\geq 0} \cap \rho_{\nu(p)}$ with $u_0 \in v'u_1'u_2' \ldots u_n'$

(日本) (日本) (日本)

Let T be a theory with a type p having the model \mathcal{M}_p , $\mathfrak{P}_{\nu(p)}$ be an $I_{\nu(p)}$ -groupoid, and X be a subset of $\rho_{\nu(p)}$ having a cardinality λ . We say that X is (formula) *definable* if for a realization a of p the set of solutions of $L_{\lambda^+,\omega}$ -formula $\varphi(a, y) = \bigvee_{u \in X} \theta_u(a, y)$ in \mathcal{M}_p

is $L_{\omega,\omega}$ -definable in \mathcal{M}_p by a formula $\psi(a, y)$. In this case we say that the formula $\psi(x, y)$ witnesses definability of X.

A groupoid $\mathfrak{P}_{\nu(p)}$ generates the strict order property if for some definable set $X \subseteq \rho_{\nu(p)}$, for a witnessing formula $\varphi(x, y)$, and for some realizations a and b of p satisfying $\models \theta_{\nu}(b, a)$ with a label $\nu \in \rho_{\nu(p)}$, the inclusion $\varphi(a, \mathcal{M}_p) \subset \varphi(b, \mathcal{M}_p)$ holds.

The following theorem shows that assuming the non-validity of the strict order property (i.e., with NSOP), we can not construct a special monoid $\mathfrak{P}_{\nu(p)}$ being almost deterministic, with bounded cardinalities for products $u_1 \ldots u_m$, or almost absorbing. Hence, these monoids can not be too small or too large with respect to their operations.

THEOREM

If T is a small theory with a type p, and a special monoid $\mathfrak{P}_{\nu(p)}$ is almost deterministic, with a constant C bounding cardinalities of sets $u_1 \ldots u_m$, or almost n-absorbing for some n, then $\mathfrak{P}_{\nu(p)}$ generates the strict order property.

<日> < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1

THEOREM (E. V. Ovchinnikova – S.)

If T is a theory of an acyclic graph $\langle M; Q \rangle$ with some unary predicates, a 1-type p(x), and a deterministic algebra $\mathfrak{P}_{\nu(p)}$, then $\mathfrak{P}_{\nu(p)}$ is generated by a free product $*_{i\in I}\mathbb{Z}_i * *_{j\in J}\mathbb{Z}_{2,j} * *_{k\in K}\langle \omega_k^*; + \rangle$ for some copies \mathbb{Z}_i of group \mathbb{Z} , copies $\mathbb{Z}_{2,j}$ of group \mathbb{Z}_2 , and copies $\langle \omega_k^*; + \rangle$ of monoid $\langle \omega^*; + \rangle$. If there are $\langle \omega_k^*; + \rangle$ then the type p is not isolated.

<日本

PROPOSITION (E. V. Ovchinnikova – S.)

For any theory T of an acyclic graph with bounded diameter and with unary predicates, for a nonempty family R of types in $S^1(T)$ and a regular family $\nu(R)$ of labelling functions, the structure $\mathfrak{P}_{\nu(R)}$ is almost deterministic.

Examples

I. If $|\rho_{\nu(p)}| = 1$ then $(x \approx y)$ is the unique principal formula up to equivalence. It is possible only in the following cases:

(1) T is small (i. e., with countable $S(\emptyset)$) and satisfies some of the following condition:

(a) p(x) is a principal type with the only realization;

(b) p(x) is a non-principal type such that if a set $\{\varphi(a, y) \land \neg(a \approx y)\} \cup p(y)$ is consistent, where $\varphi(x, y)$ is a formula of T, $\models p(a)$, then $\varphi(a, y) \not\vdash p(y)$;

(2) *T* is a theory with continuum many types and for any formula $\varphi(x, y)$ of *T* and for a realization *a* of p(x) if the set $\{\varphi(a, y) \land \neg(a \approx y)\} \cup p(y)$ is consistent and $\varphi(a, y) \vdash p(y)$ then there are no isolating formulas $\psi(a, y)$ such that

$$\psi(a, y) \vdash \varphi(a, y) \land \neg(a \approx y).$$

The case 1,a is represented by a type being realized by a constant; the cases 1,b and 2 are represented by theories of unary predicates with non-principal types p(x) and having countably many and continuum many types respectively.

STRUCTURES OF DISTRIBUTIONS FOR FORMULAS

II. Let $\rho_{\nu(p)} = \{0,1\}$. Then $1^{-1} = 1$ and any realization *a* of *p* is linked with the only realization *b* of *p* for which $\models \theta_1(a, b)$ and, moreover, $\models \theta_1(b, a)$. Then the set of realizations of *p* splits on two-element equivalence classes consisting of θ_1 -edges. If *p* is a principal type of a small theory then a θ_1 -edge is unique, and if *p* is non-principal the number of this edges can vary from 1 to the infinity depending on a model of a theory.

III. Let $\rho_{\nu(p)} = \{-1, 0\}$ be a set for a small theory T. By non-symmetric semi-isolation, the type p(x) is non-principal and the formula $\theta_{-1}(x, y)$ witnesses that SI_p is non-symmetric. The formula $\theta_{-1,-1}(x,y) \rightleftharpoons \exists z(\theta_{-1}(x,z) \land \theta_{-1}(z,y))$ is also witnessing that SI_p is non-symmetric. By assumption the formula $\theta_{-1,-1}(a, y)$ is equivalent to the formula $\theta_{-1}(a, y)$. It means that, on a set of realizations of p, the relation described by the formula $\theta_{-1}(x, y) \lor (x \approx y)$ is an infinite partial order. This partial order is dense since if the element a has a covering element then the formula $\theta_{-1}(a, y)$ is equivalent to the disjunction of consistent formulas $\theta_{-1}(a, y) \wedge \theta_{-1,-1}(a, y)$ and $\theta_{-1}(a, y) \wedge \neg \theta_{-1,-1}(a, y)$, but it is impossible for the principal formula $\theta_{-1}(a, y)$.

We consider, as a theory with $\rho_{\nu(p)} = \{-1, 0\}$, the Ehrenfeucht's theory T, i. e. the theory of a structure \mathcal{M} , formed from the structure $\langle \mathbb{Q}; < \rangle$ by adding constants c_k , $c_k < c_{k+1}$, $k \in \omega$, such that $\lim_{k \to \infty} c_k = \infty$. The type p(x), isolated by the set of formulas $c_k < x, k \in \omega$, has exactly two non-equivalent isolating formulas: $\theta_{-1}(a, y) = (a < y)$ and $\theta_0(a, y) = (a \approx y)$, where $\models p(a)$.

A (1) A (2) A (

IV. Let $\rho_{\nu(p)} = \{-1, 0, 1\}$. Realizing this equation, we consider the Ehrenfeucht's example, where each element *a* is replaced by an <-antichain consisting of two elements *a'* and *a''* such that $\models \theta_1(a', a') \land \theta_1(a'', a')$. Then we have the following equations for the type p(x) isolated by the set of formulas $c'_k < x$, $k \in \omega$: $P_p(-1, -1) = P_p(-1, 1) = P_p(1, -1) = \{-1\}, P_p(1, 1) = \{0\}$.

V. The equation $\rho_{\nu(p)} = \{-2, -1, 0\}$ with $P_p(-2, -2) = \{-2\}$ and $P_p(-2, -1) = P_p(-1, -2) = P_p(-1, -1) = \{-1\}$ can be fulfilled by two dense strict orders $<_1$ and $<_2$ on a set of realizations of a non-principal type such that $<_1$ immerses $<_2$: $<_1 \circ <_2 = <_2 \circ <_1 = <_1$.

・ 同 ト ・ ヨ ト ・ ・ ヨ ト …

VI. Consider a dense linearly ordered set $\mathcal{M} = \langle \mathbb{Q}, < \rangle$, $T = \text{Th}(\mathcal{M})$, and the unique 1-type p of T. Define a labelling function $\nu(p)$, for which 0 corresponds to the formula $(x \approx y)$, 1 to (x < y), and 2 to (y < x). We have $\rho_{\nu(p)} = \{0, 1, 2\}$, $P_p(1, 2) = P_p(2, 1) = \rho_{\nu(p)}$, $P_p(1, 1) = \{1\}$, $P_p(2, 2) = \{2\}$.

A (1) A (2) A (

Examples

VII. Take a group $\langle G; * \rangle$ and define, on the set G binary predicates Q_g , $g \in G$, by the following rule:

$$Q_g = \{(a,b) \in G^2 \mid a * g = b\}.$$

If p(x) is a type (of a theory T) realized in any model $\mathcal{M} \models T$ containing G exactly by elements in G connected by definable relations Q_g , then the type p is isolated, the set G is finite, and $\rho_{\nu(p)}$ consists of non-negative elements bijective with elements in G. If $\rho_{\nu(p)}$ consists of non-negative elements, is bijective with G, and the set of realizations of a principal type p is not fixed, then, assuming the smallness of the theory, the set G is infinite and the number of connected components with respect to the relation $Q \rightleftharpoons \bigcup Q_g$ is not bounded. At last if the type p is not isolated $g \in G$

then the number of Q-components on sets of realizations of p is also unbounded although the set G can be finite.

The Cayley table of the group $\langle G; * \rangle$ defines operations $P_p(\cdot, \ldots, \cdot)$ on the set $\rho_{\nu(p)}$ in accordance with links between the relations Q_g .

<日本

<b

VIII. Applying to a concrete group we consider the structure $\mathcal{M} \rightleftharpoons \langle \mathbb{Z}; s^{(1)} \rangle$ with the unary *successor function* $s: \mathbb{Z} \leftrightarrow \mathbb{Z}$, where s(n) = n + 1 for each $n \in \mathbb{Z}$. For the unique 1-type p of the theory $\operatorname{Th}(\mathcal{M})$ the set of pairwise non-equivalent formulas $\theta_u(x, y)$ is exhausted by the list: $y \approx \underbrace{s \dots s}_{n \text{ times}}(x)$ and $x \approx \underbrace{s \dots s}_{n \text{ times}}(y)$, $n \in \omega$. The set $\rho_{\nu(p)}$ consists of non-negative elements linked by additive group of integers.

Examples

IX. We set $T \rightleftharpoons \operatorname{Th}((\mathbb{Q}; <, c_n, c'_n)_{n \in \omega})$, where < is an ordinary strict order on the set \mathbb{Q} of rationals, constants c_n form a strictly increasing sequence, and constants c'_n form a strictly decreasing sequence, $c_n < c'_n$, $n \in \omega$. The theory T has six pairwise non-isomorphic countable models:

• a prime model with empty set of realizations of type p(x) isolated by the set $\{c_n < x \mid n \in \omega\} \cup \{x < c'_n \mid n \in \omega\};$

• a prime model over a realization of p(x), with a unique realization of this type;

• a prime model over a realization of type q(x, y) isolated by the set $p(x) \cup p(y) \cup \{x < y\}$; here the set of realizations of q(x, y) forms a closed interval [a, b];

• three limit models over the type q(x, y), in which the sets of realizations of q(x, y) are intervals of forms (a, b], [a, b), (a, b) respectively.

A (B) > A (B) > A (B) >

Examples

Consider the type q(x, y). Taking the formula $\varphi(x_1, x_2, y_1, y_2)$ defined by $x_1 \leq y_1 < y_2 \leq x_2$ we get

$$\varphi(x_1, x_2, y_1, y_2) \equiv \bigvee_{i=0}^{-3} \theta_i(x_1, x_2, y_1, y_2),$$

where
$$\theta_0(x_1, x_2, y_1, y_2) = (x_1 \approx y_1 < y_2 \approx x_2)$$
,
 $\theta_{-1}(x_1, x_2, y_1, y_2) = (x_1 < y_1 < y_2 \approx x_2)$,
 $\theta_{-2}(x_1, x_2, y_1, y_2) = (x_1 \approx y_1 < y_2 < x_2)$,
 $\theta_{-3}(x_1, x_2, y_1, y_2) = (x_1 < y_1 < y_2 < x_2)$. The following Cayley
table illustrates the algebra of isolating formulas for $q(x, y)$:

S.V. Sudoplatov STRUCTURES OF DISTRIBUTIONS FOR FORMULAS

► 4 3 ► ►

X. Consider an arbitrary λ -cube *C*. It is known that all isolating formulas $\theta_u(a, y)$, linking elements in *C*, are represented by $d_k(a, y)$, where *k* is the distance between *a* and *b* for $\models d_k(a, b)$. Assuming that each label *u* is denoted by a natural number, defining that distance, for the unique 1-type *p* and labels $m, n \in \omega$ the set $P_p(m, n)$ consists of all numbers

$$|m+\sum_{i=1}^n (-1)^{\delta_i}|,$$

where each δ_i is equal to 0 or 1. If the cardinality λ is finite then we choose only numbers that do not exceed 2^{λ} .