Decidability issues for infinite integer sequences with finite support

A. Sirokofskich
University of Crete

July 17, 2013

Few words on notation

- $\mathbb{Z}^{<\omega}$ is the set of all infinite sequences over \mathbb{Z}, with finite support.

Few words on notation

- $\mathbb{Z}^{<\omega}$ is the set of all infinite sequences over \mathbb{Z}, with finite support.
- $(x)_{i}$ stands for the i co-ordinate of $x \in \mathbb{Z}^{<\omega}$.

Multiplicative group $\left(\mathbb{Q}^{+}, \times\right)$

Consider the set of positive rationals, \mathbb{Q}^{+}.

Multiplicative group $\left(\mathbb{Q}^{+}, \times\right)$

Consider the set of positive rationals, \mathbb{Q}^{+}.
Additive group $\left(\mathbb{Z}^{<\omega},+\right)$ is isomorphic to the multiplicative group $\left(\mathbb{Q}^{+}, \times\right)$.

Multiplicative group $\left(\mathbb{Q}^{+}, \times\right)$

Consider the set of positive rationals, \mathbb{Q}^{+}.
Additive group $\left(\mathbb{Z}^{<\omega},+\right)$ is isomorphic to the multiplicative group $\left(\mathbb{Q}^{+}, \times\right)$.

Let the sequence $\left(p_{i}\right)_{i \in \mathbb{N}}$ be the natural enumeration of the set of primes.

Multiplicative group $\left(\mathbb{Q}^{+}, \times\right)$

Consider the set of positive rationals, \mathbb{Q}^{+}.
Additive group $\left(\mathbb{Z}^{<\omega},+\right)$ is isomorphic to the multiplicative group $\left(\mathbb{Q}^{+}, \times\right)$.

Let the sequence $\left(p_{i}\right)_{i \in \mathbb{N}}$ be the natural enumeration of the set of primes. Then the element $n=\prod p_{i}^{m_{i}}$ of \mathbb{Q}^{+}corresponds to the element $x \in \mathbb{Z}^{<\omega}$ with $(x)_{i}=m_{i}$ for $i \in \mathbb{N}$.

'Notion of gcd'

We can define a notion of divisibility \mid in \mathbb{Q}^{+}as follows:

'Notion of gcd'

We can define a notion of divisibility \mid in \mathbb{Q}^{+}as follows: let $n_{1}=\prod p_{i}^{m_{i}}$ and $n_{2}=\prod p_{i}^{k_{i}}$, then

$$
n_{1} \mid n_{2} \Longleftrightarrow \forall i\left(m_{i} \leq k_{i}\right) .
$$

'Notion of gcd'

We can define a notion of divisibility \mid in \mathbb{Q}^{+}as follows: let $n_{1}=\prod p_{i}^{m_{i}}$ and $n_{2}=\prod p_{i}^{k_{i}}$, then

$$
n_{1} \mid n_{2} \Longleftrightarrow \forall i\left(m_{i} \leq k_{i}\right)
$$

We extend the usual notation of gcd for n_{1}, n_{2} in \mathbb{Q}^{+}, i.e.,

'Notion of gcd'

We can define a notion of divisibility \mid in \mathbb{Q}^{+}as follows: let $n_{1}=\prod p_{i}^{m_{i}}$ and $n_{2}=\prod p_{i}^{k_{i}}$, then

$$
n_{1} \mid n_{2} \Longleftrightarrow \forall i\left(m_{i} \leq k_{i}\right)
$$

We extend the usual notation of gcd for n_{1}, n_{2} in \mathbb{Q}^{+}, i.e.,

$$
\operatorname{gcd}\left(n_{1}, n_{2}\right)=\prod p_{i}^{\min \left\{m_{i}, k_{i}\right\}}
$$

It is well known that gcd is definable from | in the substructure $\left(\mathbb{Z}^{+}, \mid,=\right)$ of $\left(\mathbb{Q}^{+}, \mid,=\right)$.

It is well known that gcd is definable from | in the substructure $\left(\mathbb{Z}^{+}, \mid,=\right)$ of $\left(\mathbb{Q}^{+}, \mid,=\right)$.
For $x, y \in \mathbb{Z}$ we have that

$$
\begin{equation*}
d=\operatorname{gcd}(x, y) \text { if and only if }(d \mid x) \wedge(d \mid y) \wedge \forall w[w|x \wedge w| y \rightarrow w \mid d] . \tag{1}
\end{equation*}
$$

It is well known that gcd is definable from | in the substructure $\left(\mathbb{Z}^{+}, \mid,=\right)$ of $\left(\mathbb{Q}^{+}, \mid,=\right)$.

For $x, y \in \mathbb{Z}$ we have that

$$
\begin{equation*}
d=\operatorname{gcd}(x, y) \text { if and only if }(d \mid x) \wedge(d \mid y) \wedge \forall w[w|x \wedge w| y \rightarrow w \mid d] . \tag{1}
\end{equation*}
$$

Note that | is existentially definable in $\left(\mathbb{Z}^{+}, \times,=\right)$by

$$
\begin{equation*}
x \mid y \text { if and only if } \exists z[x \times z=y] . \tag{2}
\end{equation*}
$$

It is well known that gcd is definable from | in the substructure $\left(\mathbb{Z}^{+}, \mid,=\right)$ of $\left(\mathbb{Q}^{+}, \mid,=\right)$.
For $x, y \in \mathbb{Z}$ we have that

$$
\begin{equation*}
d=g c d(x, y) \text { if and only if }(d \mid x) \wedge(d \mid y) \wedge \forall w[w|x \wedge w| y \rightarrow w \mid d] . \tag{1}
\end{equation*}
$$

Note that \mid is existentially definable in $\left(\mathbb{Z}^{+}, \times,=\right)$by

$$
\begin{equation*}
x \mid y \text { if and only if } \exists z[x \times z=y] \tag{2}
\end{equation*}
$$

The relation (2) does not extend to the multiplicative rationals.

Moreover, the 'gcd' is not definable in $\left(\mathbb{Q}^{+}, \times,=\right)$.

Moreover, the 'gcd' is not definable in $\left(\mathbb{Q}^{+}, \times,=\right)$.
Any module over a fixed ring has stable theory in the language of modules.

Moreover, the 'gcd' is not definable in $\left(\mathbb{Q}^{+}, \times,=\right)$.
Any module over a fixed ring has stable theory in the language of modules.

On the other hand, the notion of 'gcd' implies some kind of ordering, namely the formula

$$
\varphi(x, y): \quad \operatorname{gcd}^{\prime}(x, y)=x
$$

is unstable.

Language and structure

$$
L=\left\{+; \min ; C ;\left\{\left.\right|_{n}\right\}_{n} ;\left\{\delta_{c}\right\}_{c}\right\}
$$

$$
\mathcal{A}=\left(\mathbb{Z}^{<\omega} ;+; \min ; C ;\left\{\left.\right|_{n}\right\}_{n \in \mathbb{N}} ;\left\{\delta_{c}\right\}_{c \in \mathbb{Z}<\omega}\right),
$$

Language and structure

$$
\begin{aligned}
& L=\left\{+; \min ; C ;\left\{\left.\right|_{n}\right\}_{n} ;\left\{\delta_{c}\right\}_{c}\right\} \\
& \qquad \mathcal{A}=\left(\mathbb{Z}^{<\omega} ;+; \min ; C ;\left\{\left.\right|_{n}\right\}_{n \in \mathbb{N}} ;\left\{\delta_{c}\right\}_{c \in \mathbb{Z}<\omega}\right), \\
& x+y=z \Longleftrightarrow(x)_{i}+(y)_{i}=(z)_{i}, \text { for all } i \in \mathbb{N},
\end{aligned}
$$

Language and structure

$$
L=\left\{+; \min ; C ;\left\{\left.\right|_{n}\right\}_{n} ;\left\{\delta_{c}\right\}_{c}\right\}
$$

$$
\begin{gathered}
\mathcal{A}=\left(\mathbb{Z}^{<\omega} ;+; \min ; C ;\left\{\left.\right|_{n}\right\}_{n \in \mathbb{N}} ;\left\{\delta_{c}\right\}_{c \in \mathbb{Z}<\omega}\right), \\
x+y=z \Longleftrightarrow(x)_{i}+(y)_{i}=(z)_{i}, \text { for all } i \in \mathbb{N}, \\
\min (x, y)=z \Longleftrightarrow \min \left((x)_{i},(y)_{i}\right)=(z)_{i}, \text { for all } i \in \mathbb{N},
\end{gathered}
$$

Language and structure

$$
L=\left\{+; \min ; C ;\left\{\left.\right|_{n}\right\}_{n} ;\left\{\delta_{c}\right\}_{c}\right\}
$$

$$
\begin{gathered}
\mathcal{A}=\left(\mathbb{Z}^{<\omega} ;+; \min ; C ;\left\{\left.\right|_{n}\right\}_{n \in \mathbb{N}} ;\left\{\delta_{c}\right\}_{c \in \mathbb{Z}<\omega}\right), \\
x+y=z \Longleftrightarrow(x)_{i}+(y)_{i}=(z)_{i}, \text { for all } i \in \mathbb{N}, \\
\min (x, y)=z \Longleftrightarrow \min \left((x)_{i},(y)_{i}\right)=(z)_{i}, \text { for all } i \in \mathbb{N},
\end{gathered}
$$

C is a set of constants, exactly one for each element of $\mathbb{Z}^{<\omega}$,

Language and structure

$$
L=\left\{+; \min ; C ;\left\{\left.\right|_{n}\right\}_{n} ;\left\{\delta_{c}\right\}_{c}\right\}
$$

$$
\begin{gathered}
\mathcal{A}=\left(\mathbb{Z}^{<\omega} ;+; \min ; C ;\left\{\left.\right|_{n}\right\}_{n \in \mathbb{N}} ;\left\{\delta_{c}\right\}_{c \in \mathbb{Z}<\omega}\right), \\
x+y=z \Longleftrightarrow(x)_{i}+(y)_{i}=(z)_{i}, \text { for all } i \in \mathbb{N}, \\
\min (x, y)=z \Longleftrightarrow \min \left((x)_{i},(y)_{i}\right)=(z)_{i}, \text { for all } i \in \mathbb{N},
\end{gathered}
$$

C is a set of constants, exactly one for each element of $\mathbb{Z}^{<\omega}$,
$\left.\right|_{n}(x)$ if and only if n divides $(x)_{i}$, for all $i \in \mathbb{N}$,

Language and structure

$L=\left\{+; \min ; C ;\left\{\left.\right|_{n}\right\}_{n} ;\left\{\delta_{c}\right\}_{c}\right\}$

$$
\begin{gathered}
\mathcal{A}=\left(\mathbb{Z}^{<\omega} ;+; \min ; C ;\left\{\left.\right|_{n}\right\}_{n \in \mathbb{N}} ;\left\{\delta_{c}\right\}_{c \in \mathbb{Z}<\omega}\right), \\
x+y=z \Longleftrightarrow(x)_{i}+(y)_{i}=(z)_{i}, \text { for all } i \in \mathbb{N}, \\
\min (x, y)=z \Longleftrightarrow \min \left((x)_{i},(y)_{i}\right)=(z)_{i}, \text { for all } i \in \mathbb{N},
\end{gathered}
$$

C is a set of constants, exactly one for each element of $\mathbb{Z}^{<\omega}$,
$I_{n}(x)$ if and only if n divides $(x)_{i}$, for all $i \in \mathbb{N}$,
$\delta_{c}(x) \Longleftrightarrow$ for all $i \in \mathbb{N}$ if $(c)_{i} \neq 0$ then $(c)_{i}$ divides $(x)_{i}$.

The existential theory of \mathcal{A}

We give an effective reduction of the problem of truth of existential formulae in \mathcal{A} to that of solvability of systems of equations and inequations in Presburger Arithmetic.

The existential theory of \mathcal{A}

We give an effective reduction of the problem of truth of existential formulae in \mathcal{A} to that of solvability of systems of equations and inequations in Presburger Arithmetic.

Theorem

The existential theory of \mathcal{A} is decidable.

Complexity

Complexity

Theorem (V. Weispfenning)

There exists a Q.E. procedure assigning to any prenex formula φ (in the language of Presburger Arithmetic) an equivalent quantifier free formula φ^{\prime}. If φ has at most a quantifier-blocks each of length at most b, then the algorithm runs in time and space bounded by $2^{\text {c.length }(\varphi)^{(4 b)^{a}}}$ for some positive constant c.

Complexity

Theorem (V. Weispfenning)

There exists a Q.E. procedure assigning to any prenex formula φ (in the language of Presburger Arithmetic) an equivalent quantifier free formula φ^{\prime}. If φ has at most a quantifier-blocks each of length at most b, then the algorithm runs in time and space bounded by $2^{\text {c.length }(\varphi)^{(4 b)^{a}}}$ for some positive constant c.

- $a=1$

Complexity

Theorem (V. Weispfenning)

There exists a Q.E. procedure assigning to any prenex formula φ (in the language of Presburger Arithmetic) an equivalent quantifier free formula φ^{\prime}. If φ has at most a quantifier-blocks each of length at most b, then the algorithm runs in time and space bounded by $2^{\text {c.length }(\varphi)^{(4 b)^{a}}}$ for some positive constant c.

- $a=1$
- Reduction of $\exists-T h(\mathcal{A})$ to existential theory of Presburger Arithmetic is in time $O\left(2^{\text {length }(\varphi)}\right)$,

Complexity

Theorem (V. Weispfenning)

There exists a Q.E. procedure assigning to any prenex formula φ (in the language of Presburger Arithmetic) an equivalent quantifier free formula φ^{\prime}. If φ has at most a quantifier-blocks each of length at most b, then the algorithm runs in time and space bounded by $2^{\text {c.length }(\varphi)^{(4 b)^{a}}}$ for some positive constant c.

- $a=1$
- Reduction of $\exists-T h(\mathcal{A})$ to existential theory of Presburger Arithmetic is in time $O\left(2^{\text {length }(\varphi)}\right)$,
- Solving integer inequalities is NP-complete problem.

Complexity

Theorem (V. Weispfenning)

There exists a Q.E. procedure assigning to any prenex formula φ (in the language of Presburger Arithmetic) an equivalent quantifier free formula φ^{\prime}. If φ has at most a quantifier-blocks each of length at most b, then the algorithm runs in time and space bounded by $2^{\text {c.length }(\varphi)^{(4 b)^{a}}}$ for some positive constant c.

- $a=1$
- Reduction of $\exists-T h(\mathcal{A})$ to existential theory of Presburger Arithmetic is in time $O\left(2^{\text {length }(\varphi)}\right)$,
- Solving integer inequalities is NP-complete problem.

Back to rationals

Theorem (F. Maurin)

The first order theory of $\left(\mathbb{N}, \times,<_{P}\right)$, where $<_{P}$ is a 2-place predicate standing for the usual order relation in \mathbb{N} restricted on primes, is decidable.

Back to rationals

Theorem (F. Maurin)

The first order theory of $\left(\mathbb{N}, \times,<_{P}\right)$, where $<_{P}$ is a 2-place predicate standing for the usual order relation in \mathbb{N} restricted on primes, is decidable.

Consider the structure $\mathrm{B}=\left(\mathbb{Q}^{+}, \times, N,<_{P}\right)$, where N is a 1-place predicate standing for the set of natural numbers.

Back to rationals

Theorem (F. Maurin)

The first order theory of $\left(\mathbb{N}, \times,<_{P}\right)$, where $<_{P}$ is a 2-place predicate standing for the usual order relation in \mathbb{N} restricted on primes, is decidable.

Consider the structure $\mathrm{B}=\left(\mathbb{Q}^{+}, \times, N,<_{P}\right)$, where N is a 1-place predicate standing for the set of natural numbers.
The decidability of $\operatorname{Th}(\mathrm{B})$ follows from the decidability of $\left(\mathbb{N}, \times,<_{P}\right)$.

Intepratation of \mathcal{A} into B

Intepratation of \mathcal{A} into B

- $S_{P}(x, y) \Longleftrightarrow \operatorname{Prime}(x) \wedge \operatorname{Prime}(y) \wedge \forall z\left(\operatorname{Prime}(z) \rightarrow \neg\left(x<_{P}\right.\right.$ $\left.z \wedge z<_{P} y\right)$).

Intepratation of \mathcal{A} into B

- $S_{P}(x, y) \Longleftrightarrow \operatorname{Prime}(x) \wedge \operatorname{Prime}(y) \wedge \forall z\left(\operatorname{Prime}(z) \rightarrow \neg\left(x<_{P}\right.\right.$ $\left.z \wedge z<_{P} y\right)$).
- $P_{0}(x) \Longleftrightarrow \operatorname{Prime}(x) \wedge \forall y\left(\operatorname{Prime}(y) \rightarrow\left(x<_{p} y \vee x=y\right)\right)$.

Intepratation of \mathcal{A} into B

- $S_{P}(x, y) \Longleftrightarrow \operatorname{Prime}(x) \wedge \operatorname{Prime}(y) \wedge \forall z\left(\operatorname{Prime}(z) \rightarrow \neg\left(x<_{P}\right.\right.$ $\left.z \wedge z<_{P} y\right)$).
- $P_{0}(x) \Longleftrightarrow \operatorname{Prime}(x) \wedge \forall y\left(\operatorname{Prime}(y) \rightarrow\left(x<_{p} y \vee x=y\right)\right)$.
- $P_{i+1}(x) \Longleftrightarrow$
$\exists y_{1}, \ldots, y_{i}\left(\bigwedge_{j} \operatorname{Prime}\left(y_{j}\right) \wedge \operatorname{Prime}_{0}\left(y_{0}\right) \wedge y_{i}=x \wedge \bigwedge_{j} S_{P}\left(y_{j}, y_{j+1}\right)\right)$.

Intepratation of \mathcal{A} into B

- $S_{P}(x, y) \Longleftrightarrow \operatorname{Prime}(x) \wedge \operatorname{Prime}(y) \wedge \forall z\left(\operatorname{Prime}(z) \rightarrow \neg\left(x<_{P}\right.\right.$ $\left.z \wedge z<_{P} y\right)$).
- $P_{0}(x) \Longleftrightarrow \operatorname{Prime}(x) \wedge \forall y\left(\operatorname{Prime}(y) \rightarrow\left(x<_{p} y \vee x=y\right)\right)$.
- $P_{i+1}(x) \Longleftrightarrow$ $\exists y_{1}, \ldots, y_{i}\left(\bigwedge_{j} \operatorname{Prime}\left(y_{j}\right) \wedge \operatorname{Prime}_{0}\left(y_{0}\right) \wedge y_{i}=x \wedge \bigwedge_{j} S_{P}\left(y_{j}, y_{j+1}\right)\right)$.
- $\operatorname{den}(x)=z \Longleftrightarrow$ $N(z) \wedge N(x \times z) \wedge \forall w_{1}\left[N(w) \wedge N\left(w_{1} \times x\right) \rightarrow \exists w_{2}\left(w_{2} \times z=w_{1}\right)\right]$, where $x=\frac{y}{z}$ and $(y, z)=1$.

The structure \mathcal{A} is definable in B as follows:

The structure \mathcal{A} is definable in B as follows:

- $d=' \operatorname{gcd}(x, y)$ is interpreted by

$$
\frac{g c d(\operatorname{lcm}(\operatorname{den}(x), \operatorname{den}(y)) \times x, \quad \operatorname{lcm}(\operatorname{den}(x), \operatorname{den}(y)) \times y)}{\operatorname{lcm}(\operatorname{den}(x), \operatorname{den}(y))} .
$$

The structure \mathcal{A} is definable in B as follows:

- $d=$ ' $\operatorname{gcd}^{\prime}(x, y)$ is interpreted by

$$
\frac{g c d(\operatorname{lcm}(\operatorname{den}(x), \operatorname{den}(y)) \times x, \quad l c m(\operatorname{den}(x), \operatorname{den}(y)) \times y)}{\operatorname{lcm}(\operatorname{den}(x), \operatorname{den}(y))} .
$$

- For each constant c of \mathcal{A} with support $\left\{i_{1}, \ldots, i_{n}\right\}$ we have $x=c$ is interpreted by
$\exists y_{1}, \ldots, y_{n}\left(\bigwedge_{j} P_{j}\left(y_{j}\right) \wedge x=y_{1}^{(c)_{i_{1}}} \times \ldots \times y_{n}^{(c)_{i_{n}}}\right)$.

Complexity

The translation of any existential L-sentence φ into a $\left\{\times, N,<_{P}\right\}$-sentence φ^{\prime} gives us that φ^{\prime} is of depth 3 .

Complexity

The translation of any existential L-sentence φ into a $\left\{\times, N,<_{P}\right\}$-sentence φ^{\prime} gives us that φ^{\prime} is of depth 3 . Using the complexity bounds for sentences of depth 3 , we obtain time complexity of the algorithm deciding φ^{\prime} be $O\left(2^{\left.2^{2^{\operatorname{length}\left(\varphi^{\prime}\right)}}\right) \text {. } \text {. } \text {. }{ }^{\text {. }} \text {. }}\right.$

Complexity

The translation of any existential L-sentence φ into a $\left\{\times, N,<_{P}\right\}$-sentence φ^{\prime} gives us that φ^{\prime} is of depth 3 . Using the complexity bounds for sentences of depth 3 , we obtain time complexity of

On the other hand length $\left(\varphi^{\prime}\right)=\operatorname{length}(\varphi) \log (\operatorname{length}(\varphi))$.

Complexity

The translation of any existential L-sentence φ into a $\left\{\times, N,<_{P}\right\}$-sentence φ^{\prime} gives us that φ^{\prime} is of depth 3 . Using the complexity bounds for sentences of depth 3 , we obtain time complexity of

On the other hand length $\left(\varphi^{\prime}\right)=$ length $(\varphi) \log (\operatorname{length}(\varphi))$.

Extensions of \mathcal{A}

Let G be a finite abelian group.
$a: \mathbb{Z}^{<\omega} \rightarrow G$ an recursive homomorphism of groups which is onto.

Extensions of \mathcal{A}

Let G be a finite abelian group.
$a: \mathbb{Z}^{<\omega} \rightarrow G$ an recursive homomorphism of groups which is onto.
Consider L_{a} to be the language $\left.L \cup\left\{P_{g}\right\}_{g \in G}\right)$.

Extensions of \mathcal{A}

Let G be a finite abelian group.
$a: \mathbb{Z}^{<\omega} \rightarrow G$ an recursive homomorphism of groups which is onto.
Consider L_{a} to be the language $\left.L \cup\left\{P_{g}\right\}_{g \in G}\right)$.

$$
\mathcal{A}_{a}=\left(\mathbb{Z}^{<\omega} ;+; \min ; C ;\left\{\left.\right|_{n}\right\}_{n \in \mathbb{N}} ;\left\{P_{g}\right\}_{g \in G}\right),
$$

where + , min, C and \mid are as defined in the introduction and

$$
P_{g}(x) \Longleftrightarrow a(x)=g
$$

Extensions of \mathcal{A}

Let G be a finite abelian group.
$a: \mathbb{Z}^{<\omega} \rightarrow G$ an recursive homomorphism of groups which is onto.
Consider L_{a} to be the language $\left.L \cup\left\{P_{g}\right\}_{g \in G}\right)$.

$$
\mathcal{A}_{a}=\left(\mathbb{Z}^{<\omega} ;+; \min ; C ;\left\{\left.\right|_{n}\right\}_{n \in \mathbb{N}} ;\left\{P_{g}\right\}_{g \in G}\right),
$$

where + , min, C and \mid are as defined in the introduction and

$$
P_{g}(x) \Longleftrightarrow a(x)=g
$$

Theorem

The positive existential theory of \mathcal{A}_{a} is decidable.

Let F be a set of subgroups H of $\mathbb{Z}^{<\omega}$ of finite index in $\mathbb{Z}^{<\omega}$. Consider the structure $\mathcal{A}_{F}=\left(\mathbb{Z}^{<\omega} ;+; \min ; C ;\left\{\left.\right|_{n}\right\}_{n \in \mathbb{N}} ;\left\{P_{H}\right\}_{H \in F}\right)$, where + , \min , C and $\left.\right|_{n}$ are interpreted as usual and $P_{H}(x) \Longleftrightarrow x \in H$.

Let F be a set of subgroups H of $\mathbb{Z}^{<\omega}$ of finite index in $\mathbb{Z}^{<\omega}$. Consider the structure $\mathcal{A}_{F}=\left(\mathbb{Z}^{<\omega} ;+; \min ; C ;\left\{\left.\right|_{n}\right\}_{n \in \mathbb{N}} ;\left\{P_{H}\right\}_{H \in F}\right)$, where + , \min , C and $\left.\right|_{n}$ are interpreted as usual and $P_{H}(x) \Longleftrightarrow x \in H$.

Theorem

The existential theory of \mathcal{A}_{F} is decidable.

Properties of \mathcal{A} from the model theoretical point of view

Definition

Let T be a complete theory. Then T is unstable if and only if there is a model \mathcal{M} of T, with universe M, an infinite $X \subset M^{n}$ and a formula $\varphi(\bar{x}, \bar{y})\left(\bar{x}=\left(x_{1}, \ldots, x_{n}\right), \bar{y}=\left(y_{1}, \ldots, y_{n}\right)\right)$ defining total ordering on X.

Properties of \mathcal{A} from the model theoretical point of view

Definition

Let T be a complete theory. Then T is unstable if and only if there is a model \mathcal{M} of T, with universe M, an infinite $X \subset M^{n}$ and a formula $\varphi(\bar{x}, \bar{y})\left(\bar{x}=\left(x_{1}, \ldots, x_{n}\right), \bar{y}=\left(y_{1}, \ldots, y_{n}\right)\right)$ defining total ordering on X.

Definition

Let T be a complete theory. We say that a formula $\varphi(\bar{x}, y)$ ($\left.\bar{x}=\left(x_{1}, \ldots, x_{m}\right)\right)$ satisfies IP (independence property) in T if and only if in every model M of T there is for each $n \in \mathbb{N}$ a family $b_{0}, \ldots b_{n-1}$ such that, for all subsets X of $\{0, \ldots, n-1\}$ there is $(\bar{a}) \in|M|^{m}$

$$
M \models \varphi\left(\bar{a}, b_{i}\right) \Longleftrightarrow i \in X
$$

T is said to satisfy IP if there is a formula which satisfies IP in T.

Definition

We say that a formula $\varphi(x, \bar{y})$, with $\bar{y}=\left(x_{1}, \ldots, x_{m}\right)$, has BTP (binary tree property) if there is a set of m-tuples, $\left\{c_{\beta}: \beta \in 2^{<\mathbb{N}}\right\}$, such that

- $\left\{\varphi\left(x, c_{\beta \mid n}\right): n \in \mathbb{N}\right\}$ is consistent, for each $\beta \in 2^{\mathbb{N}}$.
- $\varphi\left(x, c_{\beta_{1}}\right) \wedge \varphi\left(x, c_{\beta_{2}}\right)$ is inconsistent, for every incomparable β_{1}, β_{2}. A complete theory T is said to have BTP if there is a formula which satisfies BTP in T .

Definition

We say that a formula $\varphi(x, \bar{y})$, with $\bar{y}=\left(x_{1}, \ldots, x_{m}\right)$, has BTP (binary tree property) if there is a set of m-tuples, $\left\{c_{\beta}: \beta \in 2^{<\mathbb{N}}\right\}$, such that

- $\left\{\varphi\left(x, c_{\beta \mid n}\right): n \in \mathbb{N}\right\}$ is consistent, for each $\beta \in 2^{\mathbb{N}}$.
- $\varphi\left(x, c_{\beta_{1}}\right) \wedge \varphi\left(x, c_{\beta_{2}}\right)$ is inconsistent, for every incomparable β_{1}, β_{2}. A complete theory T is said to have BTP if there is a formula which satisfies BTP in T .

Definition

We say that a formula $\varphi(x, \bar{y})$, with $\bar{y}=\left(x_{1}, \ldots, x_{m}\right)$, has TP_{2} (tree property) if there are m-tuples $\left(\alpha_{i, j}\right)_{i, j \in \mathbb{N}}$ and $k \in \mathbb{N}$ such that

- $\left\{\varphi\left(x, \alpha_{i, j}\right): j \in \mathbb{N}\right\}$ is k -incosistent, for each $i \in \mathbb{N}$.
- $\left\{\varphi\left(x, \alpha_{i, f(i)}\right): i \in \mathbb{N}\right\}$ is cosistent, for each $f: \mathbb{N} \rightarrow \mathbb{N}$.

A complete theory T is said to have TP_{2} if there is a formula which satisfies TP_{2} in T .

Known fact:

$$
\mathrm{TP}_{2} \Rightarrow \mathrm{IP} \Rightarrow \text { Unstable }
$$

Known fact:

$$
\mathrm{TP}_{2} \Rightarrow \mathrm{IP} \Rightarrow \text { Unstable }
$$

Theorem
 Th (\mathcal{A}) satisfies TP_{2} and BTP .

