
A Fixed Point Theorem for Non-Monotonic Functions

Zoltán Ésik1 and P. Rondogiannis2

1University of Szeged, Hungary

2University of Athens, Greece

July 15-18, 2013

(Szeged and Athens) PLS9 1 / 23



Outline

Outline

1 Negation in Logic Programming

2 The Infinite-Valued Approach to Negation

3 The Fixed-Point Theorem

4 Conclusions

(Szeged and Athens) PLS9 2 / 23



Negation in Logic Programming

Outline

1 Negation in Logic Programming

2 The Infinite-Valued Approach to Negation

3 The Fixed-Point Theorem

4 Conclusions

(Szeged and Athens) PLS9 3 / 23



Negation in Logic Programming

Logic programming supports a form of negation known as
“negation-as-failure”.

Intuitively:

The query ∼A succeeds iff our attempt to prove A terminates and fails.

Example

works ← ∼ sleeps.

sleeps.

talks ← ∼ studies.

According to negation-as-failure, works should be taken as false
because sleeps is true and talks should be taken as true because we
can not prove the truth of studies.

(Szeged and Athens) PLS9 4 / 23



Negation in Logic Programming

Negation-as-failure has very important practical applications.

Example

In a data base for a university department there exists a relation
enrolled(Student,Course). If we do not use negation-as-failure, we
must also have a relation not-enrolled(Student,Course). Relations
of this kind may be huge (without conveying essential information).

Main applications:

Logic Programming, Data Bases, Artificial Intelligence.

Main Semantic Approach:

Well-founded semantics [van Gelder, Ross and Schlipf, 1991]. It uses a
logic based on three truth values (True, 0 and False). It can be proved
that every logic program with negation has a distinguished
well-founded model.

(Szeged and Athens) PLS9 5 / 23



Negation in Logic Programming

Example

Consider the program:

works ← ∼ tired.

tired ← ∼ sleeps.

sleeps.

The well-founded model of the program is:

M = {(sleeps, True), (tired, False), (works, True)}

The well-founded model is usually constructed based on the syntax of
the program. The program is partitioned into strata according to the
dependencies through negation, and the computation of the model is
performed starting from the lower strata and moving towards the
upper ones.

(Szeged and Athens) PLS9 6 / 23



Negation in Logic Programming

Example

Consider the program:

p ← ∼ p.

The well-founded model of the program is:

M = {(p, 0)}

The program can not be partitioned into strata. The value 0 assigned
to p has the meaning “I can not decide if p is True or False”.

(Szeged and Athens) PLS9 7 / 23



Negation in Logic Programming

Two problems with the well-founded approach:

It does not give us any insight regarding the distinction between
classical negation and negation-as-failure.

Many of the properties of classical logic programming (without
negation) seem to be lost under the well-founded semantics.

A logical approach to negation-as-failure:

P. Rondogiannis and W. W. Wadge. Minimum model semantics for
logic programs with negation-as-failure. ACM Transactions on
Computational Logic 6(2): 441-467 (2005).

(Szeged and Athens) PLS9 8 / 23



The Infinite-Valued Approach to Negation

Outline

1 Negation in Logic Programming

2 The Infinite-Valued Approach to Negation

3 The Fixed-Point Theorem

4 Conclusions

(Szeged and Athens) PLS9 9 / 23



The Infinite-Valued Approach to Negation

Example

Consider the program:

works ← ∼ sleeps.

sleeps.

talks ← ∼ studies.

In the well-founded model the atoms sleeps and talks are both true.
However, sleeps seems to be “truer” than talks (because there is a
fact that asserts beyond any doubt that sleeps is true, while talks is
true just because there is no indication that studies is true).

The above example seems to imply that we need different levels of True
and False values:

F0 < F1 < · · · < Fα < · · · < 0 < · · · < Tα < · · · < T1 < T0

(Szeged and Athens) PLS9 10 / 23



The Infinite-Valued Approach to Negation

Example

The program:

works ← ∼ sleeps.

sleeps.

talks ← ∼ studies.

has as “special” model the following:

M = {(sleeps, T0), (studies, F0), (talks, T1), (works, F1)}

(Szeged and Athens) PLS9 11 / 23



The Infinite-Valued Approach to Negation

Definition:

An interpretation I of program P is a function from the set of atoms of
P to the set of truth values V = {F0, F1, . . . , Fα, . . . , 0, . . . , Tα, . . . , T1, T0}.

Definition:

Let I be an interpretation of P. We extend I as follows:

For every literal ∼p:

I(∼p) =


Tα+1 if I(p) = Fα
Fα+1 if I(p) = Tα
0 if I(p) = 0

For every conjunction of literals:

I(l1, . . . , ln) = min{I(l1), . . . , I(ln)}

(Szeged and Athens) PLS9 12 / 23



The Infinite-Valued Approach to Negation

Definition:

Let P be a program and I an interpretation of P. We will say that I
satisfies a rule of P of the form p← l1, . . . , ln if I(p) ≥ I(l1, . . . , ln).
Moreover, I is a model of P if I satisfies all the rules of P.

Definition:

Let P be a program, I an interpretation of P and v ∈ V. Then
I ‖ v = {p in P | I(p) = v}.

(Szeged and Athens) PLS9 13 / 23



The Infinite-Valued Approach to Negation

Definition:

Let I and J be interpretations of a given program P and α be a
countable ordinal.

We write I =α J, if for all β ≤ a, I ‖ Tβ = J ‖ Tβ and
I ‖ Fβ = J ‖ Fβ.

We write I <α J, if for all β < a, I =β J and either I ‖ Tα ⊂ J ‖ Tα
and I ‖ Fα ⊇ J ‖ Fα, or I ‖ Tα ⊆ J ‖ Tα and I ‖ Fα ⊃ J ‖ Fα. We
write I vα J if I =α J or I <α J.

We write I < J, if there exists a countable ordinal α such that
I <α J.

We write I v J if either I = J or I < J.

(Szeged and Athens) PLS9 14 / 23



The Infinite-Valued Approach to Negation

We define an immediate consequence operator for logic programs:

TP(I)(p) = lub{I(l1, . . . , ln) | (p← l1, . . . , ln) ∈ P}

Theorem [R&W 2005]:

For every logic program P, TP has a least fixed-point MP (with respect
to v) which is the least infinite-valued model of P (again with respect
to v).

Remark 1:

It can easily be seen that TP is not monotonic with respect to v (and
therefore one can not use the Knaster-Tarski theorem to get the
fixed-point).

Remark 2:

In our comparison of interpretations we use v and not the obvious
pointwise comparison ≤.

(Szeged and Athens) PLS9 15 / 23



The Fixed-Point Theorem

Outline

1 Negation in Logic Programming

2 The Infinite-Valued Approach to Negation

3 The Fixed-Point Theorem

4 Conclusions

(Szeged and Athens) PLS9 16 / 23



The Fixed-Point Theorem

Motivation:

The proof of the above theorem was performed using techniques that
were specifically tailored to the case of logic programs. Can we
abstract away from the issues regarding logic programming, in order to
obtain a general fixed-point theorem which can potentially be used in
other research areas?

Abstract Setting:

Suppose that (L,≤) is a complete lattice in which the least upper
bound operation is denoted by

∨
. We assume that for each countable

ordinal α, there is a preordering vα on L (subject to certain conditions
to be described shortly), where =α is the equivalence relation
determined by vα. We define x <α y iff x vα y but x =α y does not
hold. Define <=

⋃
α <α and let x v y iff x < y or x = y.

(Szeged and Athens) PLS9 17 / 23



The Fixed-Point Theorem

Required Properties:

Given a countable ordinal α and x ∈ L, define

(x]α = {y ∈ L : ∀β < α x =β y}.

We assume the following properties:

Property 1: If α < β, then vβ is included in =α.

Property 2:
⋂
α =α is the equality relation on L.

Property 3: For each x and α and for any X ⊆ (x]α there is some
y ∈ (x]α such that X vα y, and for all z ∈ (x]α, if X vα z then
y vα z and y ≤ z. The element y is unique and is denoted by⊔
α X.

Property 4: If X ⊆ L is not empty and y =α x for all x ∈ X then
y =α (

∨
X).

(Szeged and Athens) PLS9 18 / 23



The Fixed-Point Theorem

Results:

Lemma:

(L,v) is a complete lattice.

We say that f : L→ L is α-continuous if for all increasing ω-chains
x0 vα x1 vα x2 vα . . ., it holds that f(

⊔
α xn) =α

⊔
α f(xn).

Theorem 1:

Suppose that f : L→ L preserves the relation vα and is α-continuous,
for all α. Then f has a least pre-fixed point with respect to the relation
v, which is also a fixed-point of f.

(Szeged and Athens) PLS9 19 / 23



The Fixed-Point Theorem

Results (continued):

The α-continuity requirement can be dropped:

Theorem 2:

Suppose that f : L→ L preserves the relation vα for all α. Then f has
a least pre-fixed point with respect to the relation v, which is also a
fixed-point of f.

It can be shown that Theorem 1 gives as a special case Kleene’s
fixed-point theorem and Theorem 2 gives as a special case the
Knaster-Tarski fixed-point theorem.

(Szeged and Athens) PLS9 20 / 23



Conclusions

Outline

1 Negation in Logic Programming

2 The Infinite-Valued Approach to Negation

3 The Fixed-Point Theorem

4 Conclusions

(Szeged and Athens) PLS9 21 / 23



Conclusions

What has been achieved:

We have defined a fixed-point theorem for a class of non-monotonic
functions over specially structured complete lattices.

Possible Applications:

Higher-order logic programming with negation.

Logic programming with preferences.

Formal language theory.

(Szeged and Athens) PLS9 22 / 23



Conclusions

Thank you!

(Szeged and Athens) PLS9 23 / 23


	Main Talk
	Negation in Logic Programming
	The Infinite-Valued Approach to Negation
	The Fixed-Point Theorem
	Conclusions


