Introduction to the Bi-modal Analysis of Knowability

Tudor Protopopescu
CUNY Graduate Center
Pan-Hellenic Logic Symposium
$$
\text { July 18, } 2013
$$

- Is it knowable that 'Syriza formed a coalition government?'
- It depends on how one understands 'knowable'.
- You cannot know false things, but if it were true it would be knowable.
- So we might formalise 'knowable' as:

$$
F \rightarrow \diamond K F \quad \quad \text { (Verificationist Knowability }-\mathrm{VK})
$$

- For any F, if it is true, then it is knowable.
- Problem: But $F \rightarrow \diamond \mathbf{K} F$ implies, for any p :

$$
p \rightarrow \mathbf{K} p
$$

- Which says that all truths are known.
- This the Church-Fitch "Knowability Paradox"
- It seems we need a better formalization of claims about knowability.
- Analyses of the "knowability paradox" tend to treat \mathbf{K} as a non-modal operator.
- Almost no approach uses Kripke models to analyse knowability and the paradox.
- We propose a bi-modal approach to knowability statements, and argue that it is sufficiently flexible to give us coherent and useful formalizations of knowability claims.
- Helps uncover what is wrong with the knowability paradox.

Outline

Basic Assumptions

Outline

Basic Assumptions

The system B

Outline

Basic Assumptions

The system B
Knowability Principles
Stable Knowability
Monotonic Knowability
Total Knowability
Total Monotonic Knowability

Outline

Basic Assumptions

The system B

Knowability Principles
Stable Knowability
Monotonic Knowability
Total Knowability
Total Monotonic Knowability
Knowability Logics

Outline

Basic Assumptions

The system B

Knowability Principles
 Stable Knowability
 Monotonic Knowability
 Total Knowability Total Monotonic Knowability

Knowability Logics

- Bi-modal logic B is a logic with modalities \square / \diamond and \mathbf{K}.
- \mathbf{K} is the epistemic modality, informally $\mathbf{K} F$ reads as ' F is known'.
- \square / \diamond is an 'investigation' or 'verification' modality, representing the possible courses a process of gathering information might take.
- $\square F$ reads as 'at all stages of investigation F holds', while $\diamond F$ means 'at some stage of investigation F holds'
- Hence, $\square \mathbf{K} F$, says 'at every stage of investigation F is known'.
- $\diamond \mathbf{K} F$ says that 'at some stage of investigation F is (or becomes) known'

Outline

Basic Assumptions

The system B
Knowability Principles
Stable Knowability
Monotonic Knowability
Total Knowability Total Monotonic Knowability

Knowability Logics

Axioms:

A1. Axioms of classical propositional logic
A2. $\square(A \rightarrow B) \rightarrow(\square A \rightarrow \square B)$
A3. $\square A \rightarrow A$
A4. $\square A \rightarrow \square \square A$
A5. $\mathbf{K}(A \rightarrow B) \rightarrow(\mathbf{K} A \rightarrow \mathbf{K} B)$
A6. $\mathrm{K} A \rightarrow A$
Inference Rules: Modus Ponens, \square Necessitation, K Necessitation

- A model for B is a quadruple $<W, R_{\square}, R_{\mathrm{K}}, V>$.
- W is a set of states.
- R_{\square} a transitive and reflexive relation on W.
- R_{K} a reflexive relation on W.
- V is a mapping from propositional variables to subsets of W.

We can prove:
Theorem 1.
B is sound and complete with respect to the class of B models.
This is proved via the canonical model construction.

- With the framework we can now say what is wrong with VK.
- If we add $F \rightarrow \diamond \mathbf{K} F$ to B we get the system $\mathrm{B}+\mathrm{VK}$.
- $\mathrm{B}+\mathrm{VK}$ models are B models which have all instances of VK true at each state.
- But now the R_{K} relation is also all knowing, i.e. satisfies:

$$
\forall x \forall y\left(x R_{\mathrm{K}} y \rightarrow x=y\right)
$$

- Call a model omniscient if all instances of $F \rightarrow \mathbf{K} F$ are true at each state.

Theorem 2.
All models of $B+V K$ are omniscient.

Proof.

Assume some state, x, of a $\mathrm{B}+\mathrm{VK}$ model is such that $x \Vdash F$. Since R_{K} is all-knowing for any y such that $x R_{\mathrm{K}} y$ we have that $x=y$, and hence every such y is such that $y \Vdash F$, and so $x \Vdash \mathbf{K} F$. Hence $F \rightarrow \mathbf{K} F$ holds at every state of a $\mathrm{B}+\mathrm{VK}$ model.

Theorem 3.

$B+V K$ is complete with respect to the class of $B+V K$ models.
Proof.
As for B except we need to show in addition that R_{K} is all-knowing. Assume R_{K} is not all-knowing to derive a contradiction. Let Γ and Δ be maximal consistent sets in the canonical model. Assume $\Gamma R_{\mathrm{K}} \Delta$ but $\Gamma \neq \Delta$; if $\Gamma \neq \Delta$ then there is at least one formula on which they disagree. Assume X is such a formula, and assume $X \in \Gamma$ but $X \notin \Delta$. Since $F \rightarrow \diamond \mathbf{K} F$ is an axiom, $X \rightarrow \diamond \mathbf{K} X \in \Gamma$, and so by the Church-Fitch "knowability paradox" proof $X \rightarrow \mathbf{K} X \in \Gamma$. Hence $\mathbf{K} X \in \Gamma$, and so $X \in \Delta$, which is a contradiction.

- Consider the following counter-model for $F \rightarrow \diamond \mathbf{K} F$.
- Arrows represent R_{\square} and ovals R_{K}.
- Both are reflexive, and R_{\square} is transitive:

Theorem 4.
Not all instances of $F \rightarrow \diamond K F$ hold in \mathcal{M}_{1}, in particular $\mathcal{M}_{1} \nVdash p \rightarrow \diamond \mathbf{K} p$.

Proof.
At $u p$ is true, but at w and v it is false.
Since $R_{\mathbf{K}}$ is reflexive $w \nVdash \mathbf{K} p$, and since $u R_{\mathbf{K}} v u \nVdash \mathbf{K} p$ and $v \nVdash \mathbf{K} p$, hence there is no state R_{\square}-accessible from u where $\mathbf{K} p$ holds, and hence $u \nVdash \diamond \mathbf{K} p$, so $u \nVdash p \rightarrow \diamond \mathbf{K} p$. Hence not all instances of $F \rightarrow \diamond \mathbf{K} F$ hold in \mathcal{M}_{1}.

B model \mathcal{M}_{1} in which $F \rightarrow \diamond \mathbf{K} F$ is not valid.

Outline

Basic Assumptions

The system B
Knowability Principles
Stable Knowability
Monotonic Knowability
Total Knowability
Total Monotonic Knowability

Knowability Logics

- Notice that p does not stay true from state u to w.
- Call a proposition stable, in a given model, if it satisfies $F \rightarrow \square F$.
- If p were stable, we would not have a counter-model.
- If p were stable it would be knowable.

- To capture this idea we propose:

$$
\square F \rightarrow \diamond \mathbf{K} F
$$

(Stable Knowability - SK)

- If F is stably true, then it is knowable, i.e. all stable truths are knowable.
- SK does not entail the omniscience defect

Theorem 5.
$\square F \rightarrow \diamond \boldsymbol{K} F \nVdash p \rightarrow \mathbf{K} p$
Proof.
In \mathcal{M}_{1} if $\square X$ holds at any state then X holds at w, so $w \Vdash \mathbf{K} X$, hence all states have $\diamond \mathbf{K} X$, hence all instances of SK hold in \mathcal{M}_{1}, but $v \nVdash p \rightarrow \mathbf{K} p$.

B model \mathcal{M}_{1} in which $F \rightarrow \diamond \mathbf{K} F$ is not valid.

- One might think that knowledge is possible only on the basis of conclusive evidence, i.e. when no possible counter-evidence exists.
- To capture this idea we propose

$$
\square F \rightarrow \diamond \square \mathbf{K} F . \quad(\text { Monotonic Knowability }- \text { MK })
$$

- If F is stably true then it is knowable indefeasibly.
- MK also does not suffer from the omniscience defect.

Theorem 6. $\square F \rightarrow \diamond \square \boldsymbol{K} F \nVdash p \rightarrow \boldsymbol{K} p$

Proof.

Similar to Theorem 5. If $\square X$ holds at any state then $\diamond \square \mathrm{K} X$ holds at all states, so all instances of MK hold in \mathcal{M}_{1}.

B model \mathcal{M}_{1} in which $F \rightarrow \diamond \mathbf{K} F$ is not valid.

- However, not all propositions are stable.
- Interesting as they are, SK and MK have limited application. (Good for mathematical knowability perhaps?)
- Speaking generally, it seems that saying a proposition is knowable is to say that its truth is decidable (not necessarily formally) by some means or other.
- For non-stable propositions the claims about knowability might be formalised thus:

$$
\diamond \mathbf{K} F \vee \diamond \mathbf{K} \neg F . \quad(\text { Total Knowability }-T K)
$$

- This too does not yield omniscience.

Theorem 7.
$\diamond \boldsymbol{K} F \vee \diamond \boldsymbol{K} \neg F \nVdash p \rightarrow \boldsymbol{K} p$
Proof.
Again consider $\mathcal{M}_{1}, w \Vdash X \vee \neg X$ so $w \Vdash \mathbf{K} X \vee \mathbf{K} \neg X$, hence $\diamond \mathbf{K} X \vee \diamond \mathbf{K} \neg X$ holds at all states, so all instances of TK hold in \mathcal{M}_{1}, but $w \nVdash p \rightarrow \mathbf{K} p$.

B model \mathcal{M}_{1} in which $F \rightarrow \diamond \mathbf{K} F$ is not valid.

- Again, one might think that knowledge is indefesible.
- We can formalize this by:
$\diamond \square \mathbf{K} F \vee \diamond \square \mathbf{K} \neg F, \quad($ Total Monotonic Knowability $-T M K)$
- And again, we can prove TMK does not yield omniscience.

Theorem 8.
$\diamond \square K F \vee \diamond \square \boldsymbol{K} \neg F \nVdash p \rightarrow \mathbf{K} p$
Proof.
Similar to Theorem 7. Since $w \Vdash \square \mathbf{K} X \vee \square \mathbf{K} \neg X$ and R_{\square} is reflexive $w \Vdash \diamond \square \mathbf{K} X \vee \diamond \square \mathbf{K} \neg X$, hence all instances of $\diamond \square \mathbf{K} F \vee \diamond \square \mathbf{K} \neg F$ hold at all states.

B model \mathcal{M}_{1} in which $F \rightarrow \diamond \mathbf{K} F$ is not valid.

Outline

Basic Assumptions

The system B

> Knowability Principles Stable Knowability Monotonic Knowability Total Knowability Total Monotonic Knowability

Knowability Logics

- So we see that a bi-modal approach to knowability allows us to formulate different principles.
- It also enables us to compare each of these principles in a rigorous way.
- The following relations hold between the various knowability principles.

"Knowability Diamond"

- Arrows represent derivability in B, but not converses.
- Let us prove that TMK is strictly stronger than TK and MK.

Theorem 9.
$\diamond \square \mathbf{K} F \vee \diamond \square \mathbf{K} \neg F \vdash_{B} \diamond \mathbf{K} F \vee \diamond \mathbf{K} \neg F$
Proof.

1. $\diamond \square \mathbf{K} F \vee \diamond \square \mathbf{K} \neg F$
2. $\square \mathbf{K} F \rightarrow \mathbf{K} F$ Reflexivity
3. $\square(\square \mathbf{K} F \rightarrow \mathbf{K} F) 2 \mathrm{Nec}$
4. $\square \mathbf{K} \neg F \rightarrow \mathbf{K} \neg F$ Reflexivity
5. $\square(\square \mathbf{K} \neg F \rightarrow \mathbf{K} \neg F) 4 \mathrm{Nec}$
6. $\square(\square \mathbf{K} F \rightarrow \mathbf{K} F) \rightarrow(\diamond \square \mathbf{K} F \rightarrow \diamond \mathbf{K} F)$ from

$$
\square(F \rightarrow G) \rightarrow(\diamond F \rightarrow \diamond G)
$$

7. $\square(\square \mathbf{K} \neg F \rightarrow \mathbf{K} \neg F) \rightarrow(\diamond \square \mathbf{K} \neg F \rightarrow \diamond \mathbf{K} \neg F)$ from $\square(F \rightarrow G) \rightarrow(\diamond F \rightarrow \diamond G)$
8. $\diamond \square \mathbf{K} F \rightarrow \diamond \mathbf{K} F 3,6 \mathrm{MP}$
9. $\diamond \square \mathbf{K} \neg F \rightarrow \diamond \mathbf{K} \neg F 5,7 \mathrm{MP}$
10. $\diamond \mathbf{K} F \vee \diamond \mathbf{K} \neg F 1,8,9$ by propositional reasoning.

Theorem 10.
$\diamond \mathbf{K} F \vee \diamond \mathbf{K} \neg F \nVdash \diamond \square \mathbf{K} F \vee \diamond \square \mathbf{K} \neg F$
Proof.
Consider model \mathcal{M}_{2} :

\mathcal{M}_{2}, B model where $\diamond \mathbf{K} F \vee \diamond \mathbf{K} \neg F$ holds but $\diamond \square \mathbf{K} F \vee \diamond \square \mathbf{K} \neg F$ fails
$u \Vdash X \vee \neg X$ so $u \Vdash \mathbf{K} X \vee \mathbf{K} \neg X$ and $u \Vdash \diamond \mathbf{K} X \vee \diamond \mathbf{K} \neg X$. Similarly for v, hence at all states TK holds. $u, v \nVdash \square \mathbf{K} p, \square \mathbf{K} \neg p$, hence $u \nVdash \diamond \square \mathbf{K} p$ and $u \nVdash \diamond \square \mathbf{K} \neg p$, hence $\mathcal{M}_{2} \nVdash$ TMK.

Theorem 11.

$\diamond \square \mathbf{K} F \vee \diamond \square \mathbf{K} \neg F \vdash_{B} \square F \rightarrow \diamond \square \mathbf{K} F$
Proof.

1. $\diamond \square \mathbf{K} F \vee \diamond \square \mathbf{K} \neg F$
2. $\neg \diamond \square \mathbf{K} \neg F \rightarrow \diamond \square \mathbf{K} F$ from 1 by $(F \vee G) \rightarrow(\neg F \rightarrow G)$
3. $\square \neg \square \mathbf{K} \neg F \rightarrow \diamond \square \mathbf{K} F$ from $2, \square \neg$ for $\neg \diamond$
4. $\mathrm{K} \neg F \rightarrow \neg F$ Reflexivity
5. $F \rightarrow \neg \mathrm{~K} \neg F 4$ contrapositive
6. $\diamond F \rightarrow \diamond \neg \mathrm{~K} \neg F$ from 5 by Nec and $\square(F \rightarrow G) \rightarrow(\diamond F \rightarrow \diamond G)$
7. $\diamond F \rightarrow \neg \square \mathbf{K} \neg F 6 \square \neg$ for $\neg \diamond$
8. $F \rightarrow \diamond F$ reflexivity
9. $F \rightarrow \neg \square \mathbf{K} \neg F$ from 7 and 8
10. $\square F \rightarrow \square \neg \square K \neg F 9$ Nec and distribution
11. $\square F \rightarrow \diamond \square \mathbf{K} F 3$ and 10

Theorem 12.

$\square F \rightarrow \diamond \square \mathbf{K} F \nVdash \diamond \square \mathbf{K} F \vee \diamond \square \mathbf{K} \neg F$
Proof.
Consider the model \mathcal{M}_{3} :

B model \mathcal{M}_{3} where $\square F \rightarrow \diamond \square \mathbf{K} F$ holds but $\diamond \square \mathbf{K} F \vee \diamond \square \mathbf{K} \neg F$ fails.

If $\square X$ holds at either u or v then $u, v \Vdash X$, hence $\mathbf{K} X, \square \mathbf{K} X, \diamond \square \mathbf{K} X$ hold in \mathcal{M}_{3}, hence MK holds in the model. Since both $\mathbf{K} p$ and $\mathbf{K} \neg p$ fail at all states, neither of $\square \mathbf{K} p$ and $\square \mathbf{K} \neg p$ hold at any state. Therefore $\diamond \square \mathbf{K} p$ and $\diamond \square \mathbf{K} \neg p$ fail at each state, hence TMK does not hold in \mathcal{M}_{3}.

- B is just one of a family of bi-modal knowability logics.
- We can formulate the logics $\mathrm{B}+\mathrm{SK}, \mathrm{B}+\mathrm{MK}, \mathrm{B}+\mathrm{TK}$, B+TMK.
- Each represents a different view of how knowability is supposed to work.
- We can also vary the base logic of such systems, e.g. let \mathbf{K} be an S5 modality.
- All together it appears that the use of a bi-modal logic offers a robust framework for studying knowability.

Thank you!

