Introduction to the Bi-modal Analysis of Knowability

Tudor Protopopescu

CUNY Graduate Center

Pan-Hellenic Logic Symposium July 18, 2013

- Is it knowable that 'Syriza formed a coalition government?'
- It depends on how one understands 'knowable'.
- You cannot know false things, but if it were true it would be knowable.
- So we might formalise 'knowable' as:

 $F \rightarrow \Diamond \mathbf{K}F$ (Verificationist Knowability – VK)

► For any *F*, if it is true, then it is knowable.

A D D A D D A D D A D D A

• Problem: But $F \rightarrow \Diamond \mathbf{K}F$ implies, for any p:

$$p \rightarrow \mathbf{K}p$$
 (Omniscience – OMN)

- Which says that all truths are known.
- This the Church-Fitch "Knowability Paradox"
- It seems we need a better formalization of claims about knowability.

- ► Analyses of the "knowability paradox" tend to treat **K** as a non-modal operator.
- Almost no approach uses Kripke models to analyse knowability and the paradox.
- We propose a bi-modal approach to knowability statements, and argue that it is sufficiently flexible to give us coherent and useful formalizations of knowability claims.
- Helps uncover what is wrong with the knowability paradox.

Outline

Basic Assumptions

Tudor Protopopescu Introduction to the Bi-modal Analysis of Knowability

ヘロア 人間 アメヨア 人間 アー

Ð,

Outline

Basic Assumptions

The system B

・ロト ・回ト ・ヨト ・ヨト

Э

Outline

Basic Assumptions

The system B

Knowability Principles

Stable Knowability Monotonic Knowability Total Knowability Total Monotonic Knowability

(4月) トイヨト イヨト

Outline

Basic Assumptions

The system B

Knowability Principles

Stable Knowability Monotonic Knowability Total Knowability Total Monotonic Knowability

Knowability Logics

・ 同 ト ・ ヨ ト ・ ヨ ト

Outline

Basic Assumptions

The system B

Knowability Principles

Stable Knowability Monotonic Knowability Total Knowability Total Monotonic Knowability

Knowability Logics

- Bi-modal logic B is a logic with modalities \Box / \diamondsuit and **K**.
- ► K is the epistemic modality, informally KF reads as 'F is known'.
- ► □/◇ is an 'investigation' or 'verification' modality, representing the possible courses a process of gathering information might take.
- ► □ F reads as 'at all stages of investigation F holds', while ◇ F means 'at some stage of investigation F holds'
- Hence, $\Box \mathbf{K} F$, says 'at every stage of investigation F is known'.
- ▷ ◇KF says that 'at some stage of investigation F is (or becomes) known'

Outline

Basic Assumptions

The system B

Knowability Principles

Stable Knowability Monotonic Knowability Total Knowability Total Monotonic Knowability

Knowability Logics

Axioms:

A1. Axioms of classical propositional logic A2. $\Box(A \rightarrow B) \rightarrow (\Box A \rightarrow \Box B)$ A3. $\Box A \rightarrow A$ A4. $\Box A \rightarrow \Box \Box A$ A5. $\mathbf{K}(A \rightarrow B) \rightarrow (\mathbf{K}A \rightarrow \mathbf{K}B)$ A6. $\mathbf{K}A \rightarrow A$

Inference Rules: Modus Ponens,

Necessitation, K Necessitation

3

- A model for B is a quadruple $\langle W, R_{\Box}, R_{\mathbf{K}}, V \rangle$.
- W is a set of states.
- R_{\Box} a transitive and reflexive relation on W.
- $R_{\mathbf{K}}$ a reflexive relation on W.
- V is a mapping from propositional variables to subsets of W.

We can prove:

Theorem 1.

B is sound and complete with respect to the class of B models.

This is proved via the canonical model construction.

- ▶ With the framework we can now say what is wrong with VK.
- If we add $F \rightarrow \Diamond \mathbf{K}F$ to B we get the system B+VK.
- B+VK models are B models which have all instances of VK true at each state.
- But now the $R_{\mathbf{K}}$ relation is also all knowing, i.e. satisfies:

$$\forall x \forall y (x R_{\mathbf{K}} y \to x = y)$$

► Call a model *omniscient* if all instances of F → KF are true at each state.

イロト 不得 トイラト イラト 二日

Theorem 2.

All models of B+VK are omniscient.

Proof.

Assume some state, x, of a B+VK model is such that $x \Vdash F$. Since $R_{\mathbf{K}}$ is all-knowing for any y such that $xR_{\mathbf{K}}y$ we have that x = y, and hence every such y is such that $y \Vdash F$, and so $x \Vdash \mathbf{K}F$. Hence $F \to \mathbf{K}F$ holds at every state of a B+VK model.

< ロ > < 同 > < 三 > < 三 >

Theorem 3.

B+VK is complete with respect to the class of B+VK models.

Proof.

As for B except we need to show in addition that $R_{\mathbf{K}}$ is all-knowing. Assume $R_{\mathbf{K}}$ is not all-knowing to derive a contradiction. Let Γ and Δ be maximal consistent sets in the canonical model. Assume $\Gamma R_{\mathbf{K}} \Delta$ but $\Gamma \neq \Delta$; if $\Gamma \neq \Delta$ then there is at least one formula on which they disagree. Assume X is such a formula, and assume $X \in \Gamma$ but $X \notin \Delta$. Since $F \rightarrow \Diamond \mathbf{K} F$ is an axiom, $X \rightarrow \Diamond \mathbf{K} X \in \Gamma$, and so by the Church-Fitch "knowability paradox" proof $X \rightarrow \mathbf{K} X \in \Gamma$. Hence $\mathbf{K} X \in \Gamma$, and so $X \in \Delta$, which is a contradiction.

- Consider the following counter-model for $F \rightarrow \Diamond \mathbf{K} F$.
- Arrows represent R_{\Box} and ovals $R_{\mathbf{K}}$.
- ▶ Both are reflexive, and *R*_□ is transitive:

イロト イヨト イヨト イヨト

臣

Theorem 4.

Not all instances of $F \to \Diamond \mathbf{K}F$ hold in \mathcal{M}_1 , in particular $\mathcal{M}_1 \nvDash p \to \Diamond \mathbf{K}p$.

Proof.

At u p is true, but at w and v it is false. Since $R_{\mathbf{K}}$ is reflexive $w \nvDash \mathbf{K} p$, and since $uR_{\mathbf{K}}v \ u \nvDash \mathbf{K} p$ and $v \nvDash \mathbf{K} p$, hence there is no state R_{\Box} -accessible from u where $\mathbf{K} p$ holds, and hence $u \nvDash \diamond \mathbf{K} p$, so $u \nvDash p \rightarrow \diamond \mathbf{K} p$. Hence not all instances of $F \rightarrow \diamond \mathbf{K} F$ hold in \mathcal{M}_1 .

Stable Knowability Monotonic Knowability Total Knowability Total Monotonic Knowability

Outline

Basic Assumptions

The system B

Knowability Principles

Stable Knowability Monotonic Knowability Total Knowability Total Monotonic Knowability

Knowability Logics

Stable Knowability Monotonic Knowability Total Knowability Total Monotonic Knowability

- Notice that p does not stay true from state u to w.
- Call a proposition stable, in a given model, if it satisfies F → □F.
- If p were stable, we would not have a counter-model.
- If p were stable it would be knowable.

To capture this idea we propose:

 $\Box F \to \Diamond \mathbf{K}F. \qquad (Stable Knowability - SK)$

- ▶ If *F* is stably true, then it is knowable, i.e. all stable truths are knowable.
- SK does not entail the omniscience defect

Stable Knowability Monotonic Knowability Total Knowability Total Monotonic Knowability

Theorem 5. $\Box F \rightarrow \Diamond KF \nvDash p \rightarrow Kp$

Proof.

In \mathcal{M}_1 if $\Box X$ holds at any state then X holds at w, so $w \Vdash \mathbf{K}X$, hence all states have $\Diamond \mathbf{K}X$, hence all instances of SK hold in \mathcal{M}_1 , but $v \nvDash p \to \mathbf{K}p$.

Basic Assumptions	Stable Knowability
The system B	Monotonic Knowability
Knowability Principles	Total Knowability
Knowability Logics	Total Monotonic Knowability

- One might think that knowledge is possible only on the basis of conclusive evidence, i.e. when no possible counter-evidence exists.
- To capture this idea we propose

 $\Box F \to \Diamond \Box \mathbf{K}F. \qquad (Monotonic Knowability - MK)$

- ▶ If *F* is stably true then it is knowable indefeasibly.
- MK also does not suffer from the omniscience defect.

Theorem 6. $\Box F \rightarrow \Diamond \Box KF \nvDash p \rightarrow Kp$

Proof.

Similar to Theorem 5. If $\Box X$ holds at any state then $\Diamond \Box \mathbf{K} X$ holds at all states, so all instances of MK hold in \mathcal{M}_1 .

- However, not all propositions are stable.
- Interesting as they are, SK and MK have limited application. (Good for mathematical knowability perhaps?)
- Speaking generally, it seems that saying a proposition is knowable is to say that its truth is decidable (not necessarily formally) by some means or other.
- For non-stable propositions the claims about knowability might be formalised thus:

$$\diamond \mathbf{K} F \lor \diamond \mathbf{K} \neg F.$$
 (Total Knowability – TK)

• This too does not yield omniscience.

< ロ > < 同 > < 三 > < 三 >

Theorem 7. $\diamond \mathbf{K} \mathbf{F} \lor \diamond \mathbf{K} \neg \mathbf{F} \nvDash p \to \mathbf{K} p$

Proof.

Again consider \mathcal{M}_1 . $w \Vdash X \lor \neg X$ so $w \Vdash \mathbf{K}X \lor \mathbf{K}\neg X$, hence $\diamond \mathbf{K}X \lor \diamond \mathbf{K}\neg X$ holds at all states, so all instances of TK hold in \mathcal{M}_1 , but $w \nvDash p \to \mathbf{K}p$.

Basic Assumptions	Stable Knowability
The system B	Monotonic Knowability
Knowability Principles	Total Knowability
Knowability Logics	Total Monotonic Knowability

- Again, one might think that knowledge is indefesible.
- We can formalize this by:

 $\Diamond \Box \mathbf{K} F \lor \Diamond \Box \mathbf{K} \neg F$, (Total Monotonic Knowability – TMK)

And again, we can prove TMK does not yield omniscience.

Theorem 8. $\Diamond \Box KF \lor \Diamond \Box K \neg F \nvDash p \to Kp$

Proof. Similar to Theorem 7. Since $w \Vdash \Box \mathbf{K} X \lor \Box \mathbf{K} \neg X$ and R_{\Box} is reflexive $w \Vdash \Diamond \Box \mathbf{K} X \lor \Diamond \Box \mathbf{K} \neg X$, hence all instances of $\Diamond \Box \mathbf{K} F \lor \Diamond \Box \mathbf{K} \neg F$ hold at all states.

Outline

Basic Assumptions

The system B

Knowability Principles

Stable Knowability Monotonic Knowability Total Knowability Total Monotonic Knowability

Knowability Logics

- So we see that a bi-modal approach to knowability allows us to formulate different principles.
- It also enables us to compare each of these principles in a rigorous way.
- The following relations hold between the various knowability principles.

"Knowability Diamond"

Arrows represent derivability in B, but not converses.

• Let us prove that TMK is strictly stronger than TK and MK.

イロン 不同 とくほど 不同 とう

크

Theorem 9. $\Diamond \Box \mathbf{K} F \lor \Diamond \Box \mathbf{K} \neg F \vdash_B \Diamond \mathbf{K} F \lor \Diamond \mathbf{K} \neg F$

Proof.

- 1. $\bigcirc \Box \mathbf{K} F \lor \Diamond \Box \mathbf{K} \neg F$
- 2. $\Box \mathbf{K} F \rightarrow \mathbf{K} F$ Reflexivity
- 3. $\Box(\Box \mathbf{K}F \rightarrow \mathbf{K}F)$ 2 Nec
- 4. $\Box \mathbf{K} \neg F \rightarrow \mathbf{K} \neg F$ Reflexivity
- 5. $\Box(\Box \mathbf{K} \neg F \rightarrow \mathbf{K} \neg F)$ 4 Nec
- 6. $\Box(\Box \mathbf{K}F \to \mathbf{K}F) \to (\Diamond \Box \mathbf{K}F \to \Diamond \mathbf{K}F)$ from

$$\Box(F \to G) \to (\Diamond F \to \Diamond G)$$

7. $\Box(\Box \mathbf{K} \neg F \rightarrow \mathbf{K} \neg F) \rightarrow (\Diamond \Box \mathbf{K} \neg F \rightarrow \Diamond \mathbf{K} \neg F)$ from

$$\Box(F \to G) \to (\Diamond F \to \Diamond G)$$

8.
$$\Diamond \Box \mathbf{K}F \rightarrow \Diamond \mathbf{K}F$$
 3, 6 MP

9.
$$\bigcirc \Box \mathbf{K} \neg F \rightarrow \diamondsuit \mathbf{K} \neg F$$
 5, 7 MP

10. $\Diamond \mathbf{K} F \lor \Diamond \mathbf{K} \neg F$ 1, 8, 9 by propositional reasoning.

Theorem 10. $\diamond \mathbf{K} F \lor \diamond \mathbf{K} \neg F \nvDash \diamond \Box \mathbf{K} F \lor \diamond \Box \mathbf{K} \neg F$

Proof. Consider model \mathcal{M}_2 :

 \mathcal{M}_2 , B model where $\Diamond \mathbf{K} F \lor \Diamond \mathbf{K} \neg F$ holds but $\Diamond \Box \mathbf{K} F \lor \Diamond \Box \mathbf{K} \neg F$ fails

 $u \Vdash X \lor \neg X$ so $u \Vdash \mathsf{K}X \lor \mathsf{K}\neg X$ and $u \Vdash \Diamond \mathsf{K}X \lor \Diamond \mathsf{K}\neg X$. Similarly for v, hence at all states TK holds. $u, v \nvDash \Box \mathsf{K}p, \Box \mathsf{K}\neg p$, hence $u \nvDash \Diamond \Box \mathsf{K}p$ and $u \nvDash \Diamond \Box \mathsf{K}\neg p$, hence $\mathcal{M}_2 \nvDash \mathsf{TMK}$.

Theorem 11. $\Diamond \Box \mathbf{K} F \lor \Diamond \Box \mathbf{K} \neg F \vdash_B \Box F \to \Diamond \Box \mathbf{K} F$

Proof.

- 1. $\bigcirc \Box \mathbf{K} F \lor \Diamond \Box \mathbf{K} \neg F$
- 2. $\neg \Diamond \Box \mathbf{K} \neg F \rightarrow \Diamond \Box \mathbf{K} F$ from 1 by $(F \lor G) \rightarrow (\neg F \rightarrow G)$
- 3. $\Box \neg \Box \mathbf{K} \neg F \rightarrow \Diamond \Box \mathbf{K} F$ from 2, $\Box \neg$ for $\neg \Diamond$
- 4. $\mathbf{K} \neg F \rightarrow \neg F$ Reflexivity
- 5. $F \rightarrow \neg \mathbf{K} \neg F$ 4 contrapositive
- 6. $\Diamond F \rightarrow \Diamond \neg \mathbf{K} \neg F$ from 5 by Nec and $\Box (F \rightarrow G) \rightarrow (\Diamond F \rightarrow \Diamond G)$
- 7. $\Diamond F \rightarrow \neg \Box \mathbf{K} \neg F$ 6 $\Box \neg$ for $\neg \Diamond$
- 8. $F \rightarrow \Diamond F$ reflexivity
- 9. $F \rightarrow \neg \Box \mathbf{K} \neg F$ from 7 and 8
- 10. $\Box F \rightarrow \Box \neg \Box \mathbf{K} \neg F$ 9 Nec and distribution
- 11. $\Box F \rightarrow \Diamond \Box \mathbf{K}F$ 3 and 10

イロト イポト イヨト イヨト

3

Theorem 12. $\Box F \rightarrow \Diamond \Box KF \nvDash \Diamond \Box KF \lor \Diamond \Box K \neg F$

Proof.

Consider the model \mathcal{M}_3 :

B model \mathcal{M}_3 where $\Box F \rightarrow \Diamond \Box \mathbf{K}F$ holds but $\Diamond \Box \mathbf{K}F \lor \Diamond \Box \mathbf{K}\neg F$ fails.

If $\Box X$ holds at either u or v then $u, v \Vdash X$, hence $\mathbf{K}X, \Box \mathbf{K}X, \Diamond \Box \mathbf{K}X$ hold in \mathcal{M}_3 , hence MK holds in the model. Since both $\mathbf{K}p$ and $\mathbf{K}\neg p$ fail at all states, neither of $\Box \mathbf{K}p$ and $\Box \mathbf{K}\neg p$ hold at any state. Therefore $\Diamond \Box \mathbf{K}p$ and $\Diamond \Box \mathbf{K}\neg p$ fail at each state, hence TMK does not hold in \mathcal{M}_3 .

- B is just one of a family of bi-modal knowability logics.
- ► We can formulate the logics B+SK, B+MK, B+TK, B+TMK.
- Each represents a different view of how knowability is supposed to work.
- ► We can also vary the base logic of such systems, e.g. let K be an S5 modality.
- All together it appears that the use of a bi-modal logic offers a robust framework for studying knowability.

Thank you!

ヘロン ヘロン ヘビン ヘビン

Ð,