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Mereotopology

Mereotopology = Mereology + topological relations.

• mereology is an ontological discipline, theory of “Parts and
Wholes”(see [9]);

• main relations in mereology: part-of, overlap and underlap;
• its mathematical equivalent are complete Boolean

algebras without the zero element (Tarski, see [9]);
• the mathematical equivalent to mereotopology Contact

algebras ([1], [2], [10]).

Contact algebras = Boolean algebras+contact-based relations.
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Contact algebras - general definition

Definition (Contact algebra)
(B,C) = (B,0,1, .,+, ∗,C) is called a contact algebra if B is a
Boolean algebra and C is a binary relation satisfying:

x C y =⇒ x 6= 0 & y 6= 0, x C y =⇒ y C x ,
x C (y + z)⇐⇒ x C y or x C z, x .y 6= 0 =⇒ x C y .

Lemma
Let X be a topological space. Then (B,C) is a contact algebra,
where B is the Boolean algebra of the regular closed sets of X
and C is the topological contact in X.
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Contact algebras - standard definition

Lemma
Let (X ,R) be a frame, where R is a reflexive and symmetric
relation. (B,C) is a contact algebra, where B is the Boolean
algebra of the subsets of X and C is defined for x , y ⊆W:

x C y iff ∃a ∈ x ,∃b ∈ y ,a R b.

Definition (Mereotopological structure)
Let (B,0,1, .,+, ∗,C) be a contact algebra.
W = (W ,≤,O,U,C) a (static) mereotopological structure if
W 6= ∅, W ⊆ B and ≤, O and U are defined

x ≤ y iff x .y∗ = 0, x O y iff x .y 6= 0, x U y iff x + y 6= 1.
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Stable and unstable relations - standard definition

Definition (Standard dynamic mereotopological structure)
Let I 6= ∅ and for every i ∈ I, W i = (Wi ,≤i ,Oi ,Ui ,Ci) be a static
structure. Let W ⊆

∏
i∈I Wi , W 6= ∅. Then for x , y ∈W :

x ≤ y iff ∀i ∈ I, xi ≤i yi stable part-of,
x o y iff ∀i ∈ I, xi Oi yi stable overlap,
x u y iff ∀i ∈ I, xi Ui yi stable underlap,
x c y iff ∀i ∈ I, xi Ci yi stable contact,
x � y iff ∃i ∈ I, xi ≤i yi unstable part-of,
x O y iff ∃i ∈ I, xi Oi yi unstable overlap,
x U y iff ∃i ∈ I, xi Ui yi unstable underlap,
x C y iff ∃i ∈ I, xi Ci yi unstable contact.

W = (W ,≤,o,u, c,�,O,U,C) is a standard structure.
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Intuition

The intuition behind the formal definition is
• I are the moments of time;
• W i are snapshots of the environment;
• x ∈W are histories of changing regions;
• stable means always;
• unstable means sometimes.

Integrated language of spacial and temporal primitives, which
cannot be considered independantly (ideas of Whitehead [11]
and de Laguna [4]).



Mereotopology Dynamic mereotopological relations The modal logic The first reduct The second reduct Open problems

Intuition

The intuition behind the formal definition is
• I are the moments of time;
• W i are snapshots of the environment;
• x ∈W are histories of changing regions;
• stable means always;
• unstable means sometimes.

Integrated language of spacial and temporal primitives, which
cannot be considered independantly (ideas of Whitehead [11]
and de Laguna [4]).



Mereotopology Dynamic mereotopological relations The modal logic The first reduct The second reduct Open problems

Intuition

The intuition behind the formal definition is
• I are the moments of time;
• W i are snapshots of the environment;
• x ∈W are histories of changing regions;
• stable means always;
• unstable means sometimes.

Integrated language of spacial and temporal primitives, which
cannot be considered independantly (ideas of Whitehead [11]
and de Laguna [4]).



Mereotopology Dynamic mereotopological relations The modal logic The first reduct The second reduct Open problems

Intuition

The intuition behind the formal definition is
• I are the moments of time;
• W i are snapshots of the environment;
• x ∈W are histories of changing regions;
• stable means always;
• unstable means sometimes.

Integrated language of spacial and temporal primitives, which
cannot be considered independantly (ideas of Whitehead [11]
and de Laguna [4]).



Mereotopology Dynamic mereotopological relations The modal logic The first reduct The second reduct Open problems

Intuition

The intuition behind the formal definition is
• I are the moments of time;
• W i are snapshots of the environment;
• x ∈W are histories of changing regions;
• stable means always;
• unstable means sometimes.

Integrated language of spacial and temporal primitives, which
cannot be considered independantly (ideas of Whitehead [11]
and de Laguna [4]).



Mereotopology Dynamic mereotopological relations The modal logic The first reduct The second reduct Open problems

Intuition

The intuition behind the formal definition is
• I are the moments of time;
• W i are snapshots of the environment;
• x ∈W are histories of changing regions;
• stable means always;
• unstable means sometimes.

Integrated language of spacial and temporal primitives, which
cannot be considered independantly (ideas of Whitehead [11]
and de Laguna [4]).



Mereotopology Dynamic mereotopological relations The modal logic The first reduct The second reduct Open problems

Stable and unstable relations - general definition

Definition (Dynamic mereotopological structure)
(W ,≤,o,u, c,�,O,U,C) is a dynamic structure if it satisfies:

(M1) x ≤ x (M11) y U y or x ≤ y (M21) x o x or x � y

(M2) x ≤ y & y ≤ z ⇒ x ≤ z (M12) x ≤ y or x O z or y U z (M22) x o z or y U z or x � y

(M3) x ≤ y & y ≤ x ⇒ x = y (M13) x O x or x U x (M23) x u y ⇒ y u x

(M4) x O y ⇒ y O x (M14) x � x (M24) x u y ⇒ x u x

(M5) x O y ⇒ x O x (M15) x ≤ y & y � z ⇒ x � z (M25) x ≤ y & y u z ⇒ x u z

(M6) x O y & y ≤ z ⇒ x O z (M16) x � y & y ≤ z ⇒ x � z (M26) x � y & y u z ⇒ x U z

(M7) x O x or x ≤ y (M17) x o y ⇒ y o x (M27) x O z or y u z or x � y

(M8) x U y ⇒ y U x (M18) x o y ⇒ x o x (M28) y u y or x � y

(M9) x U y ⇒ x U x (M19) x o y & y ≤ z ⇒ x o z (M29) x o x or x U x

(M10) x ≤ y & y U z ⇒ x U z (M20) x o y & y � z ⇒ x O z (M30) x O x or x u x

(C1) x C y ⇒ y C x (C4) x C y & y ≤ z ⇒ x C z (C7) x c y ⇒ x o x

(C2) x O y ⇒ x C y (C5) x c y ⇒ y c x (C8) x c y & y ≤ z ⇒ x c z

(C3) x C y ⇒ x O x (C6) x o y ⇒ x c y (C9) x c y & y � z ⇒ x C z

(C10) z c t & x u y & z O y & t O x ⇒ x C y
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The first-order logic

Two classes: the standard structures - Σstd, and the general
structures - Σgen. Results ([5], [6], [7]):
• FOL(Σstd) = FOL(Σgen);
• FOL(Σstd) is complete w.r.t. (M1)-(M30), (C1)-(C10);
• FOL(Σstd) (or FOL(Σgen) respectively) is hereditary

undecidable (see [3]);
• the quantifier-free fragment of this logic is complete;
• the satisfiability problem of the quantifier-free fragment is

NP-complete;



Mereotopology Dynamic mereotopological relations The modal logic The first reduct The second reduct Open problems

The first-order logic

Two classes: the standard structures - Σstd, and the general
structures - Σgen. Results ([5], [6], [7]):
• FOL(Σstd) = FOL(Σgen);
• FOL(Σstd) is complete w.r.t. (M1)-(M30), (C1)-(C10);
• FOL(Σstd) (or FOL(Σgen) respectively) is hereditary

undecidable (see [3]);
• the quantifier-free fragment of this logic is complete;
• the satisfiability problem of the quantifier-free fragment is

NP-complete;



Mereotopology Dynamic mereotopological relations The modal logic The first reduct The second reduct Open problems

The first-order logic

Two classes: the standard structures - Σstd, and the general
structures - Σgen. Results ([5], [6], [7]):
• FOL(Σstd) = FOL(Σgen);
• FOL(Σstd) is complete w.r.t. (M1)-(M30), (C1)-(C10);
• FOL(Σstd) (or FOL(Σgen) respectively) is hereditary

undecidable (see [3]);
• the quantifier-free fragment of this logic is complete;
• the satisfiability problem of the quantifier-free fragment is

NP-complete;



Mereotopology Dynamic mereotopological relations The modal logic The first reduct The second reduct Open problems

The first-order logic

Two classes: the standard structures - Σstd, and the general
structures - Σgen. Results ([5], [6], [7]):
• FOL(Σstd) = FOL(Σgen);
• FOL(Σstd) is complete w.r.t. (M1)-(M30), (C1)-(C10);
• FOL(Σstd) (or FOL(Σgen) respectively) is hereditary

undecidable (see [3]);
• the quantifier-free fragment of this logic is complete;
• the satisfiability problem of the quantifier-free fragment is

NP-complete;



Mereotopology Dynamic mereotopological relations The modal logic The first reduct The second reduct Open problems

The logic, axioms, definability

The polymodal logic of Σstd and the universal relation A.
(M1)-(M30), (C1)-(C10) are definable, but (M3). Replace it with:
(M3’) x O x and y ≤ x ⇒ x = y
(M3”) x U x and x ≤ y ⇒ x = y
(M3”’) z O x and z U y and y ≤ x ⇒ x = y

Definition
(W ,≤,o,u, c,�,O,U,C) is a non-standard structure if it
satisfies (M1),(M2),(M3’),(M3”),(M3”’),(M4)-(M30), (C1)-(C10).
These structures form Σnonstd.

Lemma (P-morphism lemma)
For every non-standard structure W there is a general structure
W ′ and a p-morphism from W onto W ′.
Proved via a generalization of Segerberg’s Bulldozer method.
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Completeness

Theorem (Completeness theorem)
The following propositions are equivalent for every formula α:
(1) α is theorem of the logic;
(2) α is true in every non-standard structure from Σnonstd;
(3) α is true in every general structure from Σgen;
(4) α is true in every standard structure from Σstd.

See [5], [7], [8] for detailed proofs. Here is a sketch:
(1) −→ (2): soundness;
(1)←− (2): generated cannonical models;
(2) −→ (3): every general structure is non-standard;
(2)←− (3): P-morphism lemma;
(3) −→ (4): every standard structure is general;
(3)←− (4): representaion theory (every general structure has
an isomorphic standard one).
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(3)←− (4): representaion theory (every general structure has
an isomorphic standard one).
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The first reduct

The logic with the unstable contact C, without the stable contact
c. Models of the form W = (W ,≤,o,u,�,O,U,C).

Filtration: start from reduct model (W , v) and set of formulae Γ.
1. Γ is closed under sub-formulae;
2. 〈R〉> ∈ Γ for each of the modalities o, u, O and U where >

is an arbitrary fixed MLDM tautology;
3. if [R]α ∈ Γ for some modality R then [R]α ∈ Γ for all

modalities of the logic.

We build the filtered finite model (W ′, v ′) in the standard way.
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The filtration - relations ≤ and �

Relation ≤′: [x ] ≤′ [y ] holds iff the following conditions are met

v(x, 〈O〉>) = 1 implies v(y, 〈O〉>) = 1, v(y, 〈U〉>) = 1 implies v(x, 〈U〉>) = 1,

v(x, 〈o〉>) = 1 implies v(y, 〈o〉>) = 1, v(y, 〈u〉>) = 1 implies v(x, 〈u〉>) = 1,

v(x, [≤]α) = 1 implies v(y, [≤]α) = 1, v(y, [≥]α) = 1 implies v(x, [≥]α) = 1,

v(y, [O]α) = 1 implies v(x, [O]α) = 1, v(x, [U]α) = 1 implies v(y, [U]α) = 1,

v(x, [�]α) = 1 implies v(y, [�]α) = 1, v(y, [�]α) = 1 implies v(x, [�]α) = 1,

v(y, [o]α) = 1 implies v(x, [o]α) = 1, v(x, [u]α) = 1 implies v(y, [u]α) = 1,

v(y, [C]α) = 1 implies v(x, [C]α) = 1, v(y, [c]α) = 1 implies v(x, [c]α) = 1.

Relation �′: [x ] �′ [y ] iff

v(x, 〈o〉>) = 1 implies v(y, 〈O〉>) = 1, v(y, 〈u〉>) = 1 implies v(x, 〈U〉>) = 1,

v(x, [�]α) = 1 implies v(y, [≤]α) = 1, v(y, [�]α) = 1 implies v(x, [≥]α) = 1,

v(y, [O]α) = 1 implies v(x, [o]α) = 1, v(x, [U]α) = 1 implies v(y, [u]α) = 1,

v(y, [C]α) = 1 implies v(x, [c]α) = 1.
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The filtration - relations o, O, u, U and C
Relation o′: [x ] o′ [y ] iff

v(x, 〈o〉>) = 1 v(y, 〈o〉>) = 1

v(x, [o]α) = 1 implies v(y, [≤]α) = 1, v(y, [o]α) = 1 implies v(x, [≤]α) = 1,

v(x, [O]α) = 1 implies v(y, [�]α) = 1, v(y, [O]α) = 1 implies v(x, [�]α) = 1.
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v(x, 〈O〉>) = 1 v(y, 〈O〉>) = 1

v(x, [O]α) = 1 implies v(y, [≤]α) = 1), v(y, [O]α) = 1 implies v(x, [≤]α) = 1).

Relation u′: [x ] u′ [y ] iff
v(x, 〈u〉>) = 1 v(y, 〈u〉>) = 1

v(x, [u]α) = 1 implies v(y, [≥]α) = 1, v(y, [u]α) = 1 implies v(x, [≥]α) = 1,

v(x, [U]α) = 1 implies v(y, [�]α) = 1, v(y, [U]α) = 1 implies v(x, [�]α) = 1.

Relation U′: [x ] U′ [y ] iff
v(x, 〈U〉>) = 1 v(y, 〈U〉>) = 1

v(x, [U]α) = 1 implies v(y, [≥]α) = 1, v(y, [U]α) = 1 implies v(x, [≥]α) = 1.

Relation C′: [x ] C′ [y ] iff
v(x, 〈O〉>) = 1 v(y, 〈O〉>) = 1

v(x, [C]α) = 1 implies v(y, [≤]α) = 1), v(y, [C]α) = 1 implies v(x, [≤]α) = 1).
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The second reduct

The logic with both contacts, without the unstable part-of �.
Models of the form W = (W ,≤,o,u, c,O,U,C).

Filtration: start from reduct model (W , v) and Γ.
1. Γ is closed under sub-formulae;
2. if α ∈ Γ and α does not start with [≤] (i.e. α is not in the

form of [≤]β) then [≤]α ∈ Γ and [≤]¬α ∈ Γ.

The filtered finite model (W ′, v ′) is build standardly.
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The filtration

Relation ≤′ is defined standardly for S4 modality:

for all [≤]α ∈ Γ, v(x , [≤]α) = 1 implies v(y , [≤]α) = 1.

[x ] O′ [y ]↔ ∃z, t ∈W , [z] ≤′ [x ], [t ] ≤′ [y ] and z O t .
[x ] U′ [y ]↔ ∃z, t ∈W , [x ] ≤′ [z], [y ] ≤′ [t ] and z U t .
[x ] o′ [y ]↔ ∃z, t ∈W , [z] ≤′ [x ], [t ] ≤′ [y ] and z o t .
[x ] u′ [y ]↔ ∃z, t ∈W , [x ] ≤′ [z], [y ] ≤′ [t ] and z u t .
[x ] c′ [y ]↔ ∃z, t ∈W , [z] ≤′ [x ], [t ] ≤′ [y ] and z c t .
[x ] C′ [y ]↔ ∃z, t ∈W , [z] ≤′ [x ], [t ] ≤′ [y ] and z C t .
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Open problems

Open problems and further developement of the dynamic
mereotopological relations and logics for them:
• the decidability of the full modal logic;
• the complexity of the modal logic (if it is decidable);
• the complexity of the decidable reducts;
• addition of more mereotopological relations;
• addition of more temporal constructions - e.g. before, until,

since, etc.
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Thank you!!
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