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Motivation for the fixed-point problem

I First-order language L.
Expanded language L+, adding a monadic predicate T .

I Ground model M for L. Can we extend M with an
interpretation for T such that for any sentence A of L+,
valM+(TpAq) = valM+(A)?

I Classical logic: No, due to the paradoxes.

I A scheme of interpretation (say, the classical or strong Kleene
one) has the fixed-point property when, for every ground
model M there is an interpretation for truth.

I 1.Theorem (Visser): Let E be the set of truth values. If
(E ,≤) is a ccpo and the logical connectives of a scheme are
monotonic on (E ,≤), then the scheme has the f.p.p.
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The Kleene languages

E3 = {0, 1, 2}.

¬k

0 1
1 0
2 2

∧s 0 1 2

0 0 0 0
1 0 1 2
2 0 2 2

∧w 0 1 2

0 0 0 2
1 0 1 2
2 2 2 2

I The order of knowledge on E3:

t���@
@

@

2

t0 t 1

I 2.Corollary (Kripke, Martin, Woodruff): The Kleene
interpreted languages have the fixed-point property.
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The interpreted language of Gupta-Martin

I The operator of pathologicality:

↓
0 0
1 0
2 1

I 3.Proposition (Gupta-Belnap): The weak Kleene scheme of
interpretation with the operator ↓ has the f.p.p.

I Problem (Gupta-Belnap): Characterize the schemes of
interpretation which have the f.p.p.
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Stipulation logic (Visser)

I Given an interpreted propositional language, a stipulation is a
system of equations of the form pi = ϕ, where pi is an atomic
proposition of the language and ϕ any formula of the
language.

I Liar sentence: ‘this sentence is not true’

I (`) ‘` is not true’

I ` = ¬`

I (1) If this sentence is true, then the following sentence is not
true.
(2) Either the previous sentence is not true or snow is white
p1 = p1 → ¬p2

p2 = ¬p1 ∨ p3

p3 = 1
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Stipulation logic

I A stipulation is consistent when the system of equations has a
solution, i.e, when there is an assignment v of truth values to
the atomic propositions such that v(pi ) = v(ϕi ) for all i .

I An interpreted propositional language has the fixed-point
property (f.p.p.) when every stipulation is consistent.

I Fixed-point problem (Gupta-Belnap): Given a set of truth
values E , characterize the interpreted propositional languages
on E that have the f.p.p.
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Some results about the f.p.p.

I 4.Theorem (Visser): Let E be the set of truth values. If
(E ,≤) is a ccpo and the logical operators of an interpreted
language are monotone functions on that order, then the
scheme has the f.p.p.

I 5.Theorem: Let F be an interpreted three-valued language.
Then F has the f.p.p. iff every unary operator that can be
defined in F has a fixed point. The same characterization is
valid for two-valued interpreted languages.
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Belnap’s logic

I 〈¬b,∧b〉

¬b

0 1
1 0
2 2
3 3

∧b 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 2 0
3 0 3 0 3

I The order of information on E4:

t���@
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@
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Some unary operators

I

¬e

0 1
1 0
2 1
3 1

↓1
0 0
1 1
2 0
3 0

↓2
0 0
1 0
2 1
3 0

↓3
0 0
1 0
2 0
3 1

I

¬?

0 1
1 0
2 1
3 3

↓?1
0 0
1 1
2 0
3 3

↓?2
0 0
1 0
2 1
3 3
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Adding conditionals

I

→?
l 0 1 2 3

0 1 1 1 3
1 0 1 2 3
2 2 1 1 3
3 3 3 3 3

↔?
l 0 1 2 3

0 1 0 2 3
1 0 1 2 3
2 2 2 1 3
3 3 3 3 3

↔?
st 0 1 2 3

0 1 0 0 3
1 0 1 0 3
2 0 0 1 3
3 3 3 3 3

I 6.Theorem: Belnap’s clone is maximal for the f.p.p.

I 7.Corollary: Adding any of the operators ¬?, ↓1, ↓?1, ↓2, ↓?2,
↓3, →?

l , ↔?
l or ↔?

st to Belnap’s language produces paradoxes.
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Fitting’s logic

I

¬b

0 1
1 0
2 2
3 3

∧sw 0 1 2 3

0 0 0 0 3
1 0 1 2 3
2 0 2 2 3
3 3 3 3 3

I 8.Proposition: 〈¬b,∧sw , ↓2〉 does not have the fixed-point
property.
Proof: x = ¬b ↓2 (2 ∧sw x).
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Some definitions

I Given a k-valued language F , let us call F (1) the set of unary
operators expressible in he language and F (1−1) the group of
functions in F (1) which are permutations. For a ∈ Ek , the
stabilizer of a (denoted as St(a)) is the set of all permutations
f : Ek → Ek such that f (a) = a.

I Given a partial order (E ,≤), let us call Mon(≤) the
interpreted language generated by all functions monotonic on
≤. The flat ccpo on Ek+1 is the partial order ≤k defined by
k ≤k i for all i ∈ Ek+1.

I Let f : Ek+1 → Ek+1. The derived set of f , denoted der f , is
the set of all functions which can be obtained from f with
some (all, none) of its variables replaced by constants. IA,
A ⊆ Ek , is the set of all functions on Ek that preserve the set
A. The restriction of f : Ek+1 → Ek+1, denoted re f , is the
function re f : Ek → Ek+1 defined as
re f (x1, . . . , xn) = f (x1, . . . , xn), for all x1, . . . , xn ∈ Ek .
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The interpreted languages Gk

I Gk is the interpreted language generated by all functions
f : Ek+1 → Ek+1 that satisfy the following conditions:

1. For every g ∈ der f , if g 6= ck , then g ∈ I{0...k−1}.
2. If f (a0, . . . , an−1) 6= k , for some ai ∈ Ek+1 and

ai0 = . . . = aij = k , for 0 ≤ j ≤ n − 1 and
0 ≤ i0 ≤ . . . ≤ ij ≤ n − 1, then the function

re f (a0, . . . , ai0−1, x1, ai0+1, . . . , aij−1, xj , aij+1, . . . , an−1)

is constant.

I Examples:

f1 0 1 2 3

0 0 2 1 3
1 0 2 1 3
2 0 2 0 3
3 0 1 2 3

f2 0 1 2 3

0 1 1 1 2
1 0 0 0 2
2 2 2 2 0
3 3 3 3 3

I f1 /∈ G3, f2 ∈ G3
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A fixed point theorem

I 9.Theorem: Let F be a k-valued interpreted language such
that every function in F (1) has a fixed point and
F (1−1) = St(k). Then either F ⊆ Gk or F ⊆ Mon(≤k).

I 10.Theorem: Any (k+1)-valued interpreted language F such
that every unary function defined in F has a fixed point and
F (1−1) = St(k) has the fixed-point property.

I 11.Corollary: The four-valued language that contains the
constants and the operators
¬b,¬?,∧sw , ↓?1, ↓?2, ↓3,→?

l ,↔?
l ,↔?

st has the f.p.p.
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Another four-valued generalization of weak Kleene logic

I 〈¬b,∧ww 〉.

∧ww 0 1 2 3

0 0 0 2 3
1 0 1 2 3
2 2 2 2 3
3 3 3 3 3

∧sw 0 1 2 3

0 0 0 0 3
1 0 1 2 3
2 0 2 2 3
3 3 3 3 3

I 12.Theorem: The four-valued interpreted language that
contains the constants and the operators ¬b,∧ww , ↓2, ↓3 has
the fixed-point property.
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Another four-valued generalization of weak Kleene logic

Sketch of the proof:

I Let us call H(G2) the set of all finitary functions f on E4 that
satisfy the following condition: for all g ∈ der f , if g 6= c3,
then g ∈ I{0,1,2} and g ∈ G2.

I First step: Show that all the functions expressible in the
language satisfy this condition. One can do this by checking
the truth tables of the operators ¬b, ∧ww , ↓2 and ↓3, and then
proving that H(G2) is closed under composition of functions.

I Second step: Show that an interpreted language that
expresses exactly the functions of H(G2) has the fixed-point
property. Given a stipulation, the valuation that shows that it
is consistent is found through a procedure based on the
definition of the functions in H(G2) and the fact that G2 has
the fixed-point.
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Generalization of Visser’s Theorem

I Let us say that a partial order (E ,≤) is stable if all monotonic
functions from E to E have a fixed point.

I 13.Theorem: Let (Ek ,≤) (k ≥ 2) be a stable partial order
and F ⊆ Ok a clone such that F (1) ⊆ (Mon ≤)(1). Then F
has the fixed-point property.
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