On some self-referential four-valued languages

José Martínez Fernández Logos - Universitat de Barcelona

July 14, 2013

• E • • E

Motivation for the fixed-point problem

First-order language *L*.

Expanded language L^+ , adding a monadic predicate T.

Motivation for the fixed-point problem

- First-order language L.
 Expanded language L⁺, adding a monadic predicate T.
- Ground model *M* for *L*. Can we extend *M* with an interpretation for *T* such that for any sentence *A* of *L*⁺, val_{M+}(*T*[¬]*A*[¬]) = val_{M+}(*A*)?

Motivation for the fixed-point problem

- First-order language L.
 Expanded language L⁺, adding a monadic predicate T.
- Ground model *M* for *L*. Can we extend *M* with an interpretation for *T* such that for any sentence *A* of *L*⁺, val_{M+}(*T*[¬]*A*[¬]) = val_{M+}(*A*)?
- Classical logic: No, due to the paradoxes.

- First-order language L.
 Expanded language L⁺, adding a monadic predicate T.
- Ground model M for L. Can we extend M with an interpretation for T such that for any sentence A of L⁺, val_{M⁺}(T[¬]A[¬]) = val_{M⁺}(A)?
- Classical logic: No, due to the paradoxes.
- A scheme of interpretation (say, the classical or strong Kleene one) has the *fixed-point property* when, for every ground model *M* there is an interpretation for truth.

- First-order language L.
 Expanded language L⁺, adding a monadic predicate T.
- Ground model M for L. Can we extend M with an interpretation for T such that for any sentence A of L⁺, val_{M⁺}(T[¬]A[¬]) = val_{M⁺}(A)?
- Classical logic: No, due to the paradoxes.
- A scheme of interpretation (say, the classical or strong Kleene one) has the *fixed-point property* when, for every ground model *M* there is an interpretation for truth.
- ▶ 1.Theorem (Visser): Let E be the set of truth values. If (E, ≤) is a ccpo and the logical connectives of a scheme are monotonic on (E, ≤), then the scheme has the f.p.p.

マロト マヨト マヨト

The Kleene languages

 $E_3=\{0,1,2\}.$

▶ The order of knowledge on *E*₃:

æ

The Kleene languages

 $E_3=\{0,1,2\}.$

▶ The order of knowledge on *E*₃:

2.Corollary (Kripke, Martin, Woodruff): The Kleene interpreted languages have the fixed-point property.

► The operator of pathologicality:

$$\begin{array}{c|c}
 \downarrow \\
\hline
 0 & 0 \\
1 & 0 \\
2 & 1
\end{array}$$

伺 とう きょう とう とう

æ

The operator of pathologicality:

► 3.Proposition (Gupta-Belnap): The weak Kleene scheme of interpretation with the operator ↓ has the f.p.p.

伺 と く き と く き と

The operator of pathologicality:

- ► 3.Proposition (Gupta-Belnap): The weak Kleene scheme of interpretation with the operator ↓ has the f.p.p.
- Problem (Gupta-Belnap): Characterize the schemes of interpretation which have the f.p.p.

高 とう モン・ く ヨ と

Given an interpreted propositional language, a *stipulation* is a system of equations of the form p_i = φ, where p_i is an atomic proposition of the language and φ any formula of the language.

- Given an interpreted propositional language, a *stipulation* is a system of equations of the form p_i = φ, where p_i is an atomic proposition of the language and φ any formula of the language.
- Liar sentence: 'this sentence is not true'

通 とう ほうとう ほうど

- Given an interpreted propositional language, a *stipulation* is a system of equations of the form p_i = φ, where p_i is an atomic proposition of the language and φ any formula of the language.
- Liar sentence: 'this sentence is not true'
- ► (ℓ) 'ℓ is not true'

- Given an interpreted propositional language, a *stipulation* is a system of equations of the form p_i = φ, where p_i is an atomic proposition of the language and φ any formula of the language.
- Liar sentence: 'this sentence is not true'
- ► (ℓ) 'ℓ is not true'
- $\blacktriangleright \ \ell = \neg \ell$

- Given an interpreted propositional language, a *stipulation* is a system of equations of the form p_i = φ, where p_i is an atomic proposition of the language and φ any formula of the language.
- Liar sentence: 'this sentence is not true'
- ► (ℓ) 'ℓ is not true'

$$\blacktriangleright \ \ell = \neg \ell$$

► (1) If this sentence is true, then the following sentence is not true.

(2) Either the previous sentence is not true or snow is white $p_1 = p_1 \rightarrow \neg p_2$ $p_2 = \neg p_1 \lor p_3$ $p_3 = \mathbf{1}$

伺い イヨト イヨト

A stipulation is *consistent* when the system of equations has a solution, i.e, when there is an assignment v of truth values to the atomic propositions such that v(p_i) = v(φ_i) for all i.

- ► A stipulation is *consistent* when the system of equations has a solution, i.e, when there is an assignment v of truth values to the atomic propositions such that v(p_i) = v(φ_i) for all i.
- An interpreted propositional language has the *fixed-point* property (f.p.p.) when every stipulation is consistent.

- A stipulation is *consistent* when the system of equations has a solution, i.e, when there is an assignment v of truth values to the atomic propositions such that v(p_i) = v(φ_i) for all i.
- An interpreted propositional language has the *fixed-point* property (f.p.p.) when every stipulation is consistent.
- Fixed-point problem (Gupta-Belnap): Given a set of truth values *E*, characterize the interpreted propositional languages on *E* that have the f.p.p.

・ 同 ト ・ ヨ ト ・ ヨ ト

► 4.Theorem (Visser): Let E be the set of truth values. If (E, ≤) is a ccpo and the logical operators of an interpreted language are monotone functions on that order, then the scheme has the f.p.p.

白 と く ヨ と く ヨ と

- ▶ 4.Theorem (Visser): Let E be the set of truth values. If (E, ≤) is a ccpo and the logical operators of an interpreted language are monotone functions on that order, then the scheme has the f.p.p.
- ▶ **5.Theorem**: Let *F* be an interpreted three-valued language. Then *F* has the f.p.p. iff every unary operator that can be defined in *F* has a fixed point. The same characterization is valid for two-valued interpreted languages.

伺下 イヨト イヨト

Belnap's logic

$$\blacktriangleright \langle \neg_b, \wedge_b \rangle$$

	$\neg b$	\wedge_{b}	0	1	2	3
0	1	0	0	0	0	0
1	0	1	0	1	2	3
2	2	2	0	2	2	0
3	3	3	0	3	0	3

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Belnap's logic

$$\blacktriangleright \langle \neg_b, \wedge_b \rangle$$

• The order of information on E_4 :

æ

3

Some unary operators

- 170

< ≣⇒

æ

Some unary operators

A ►

< ≣⇒

æ

Adding conditionals

↔* 2 1 3 $\leftrightarrow_{st}^{\star}$ 1 3

æ

Adding conditionals

3 3 3 3 1 2 3 $\leftrightarrow_{st}^{\star}$

6.Theorem: Belnap's clone is maximal for the f.p.p.

æ

Adding conditionals

 $\begin{array}{c|ccccc} \leftrightarrow_{st}^{\star} & 0 & 1 & 2 & 3 \\ \hline 0 & 1 & 0 & 0 & 3 \\ 1 & 0 & 1 & 0 & 3 \\ 2 & 0 & 0 & 1 & 3 \\ 3 & 3 & 3 & 3 & 3 \end{array}$

- 6.Theorem: Belnap's clone is maximal for the f.p.p.
- ► 7.Corollary: Adding any of the operators ¬_{*}, ↓₁, ↓^{*}₁, ↓₂, ↓^{*}₂, ↓₃, →^{*}_I, ↔^{*}_I or ↔^{*}_{st} to Belnap's language produces paradoxes.

< ≣⇒

æ

B.Proposition: ⟨¬_b, ∧_{sw}, ↓₂⟩ does not have the fixed-point property.
 Proof: x = ¬_b ↓₂ (2 ∧_{sw} x).

문 문 문

Some definitions

Given a k-valued language F, let us call F⁽¹⁾ the set of unary operators expressible in he language and F⁽¹⁻¹⁾ the group of functions in F⁽¹⁾ which are permutations. For a ∈ E_k, the stabilizer of a (denoted as St(a)) is the set of all permutations f : E_k → E_k such that f(a) = a.

伺 とう ヨン うちょう

Some definitions

- Given a k-valued language F, let us call F⁽¹⁾ the set of unary operators expressible in he language and F⁽¹⁻¹⁾ the group of functions in F⁽¹⁾ which are permutations. For a ∈ E_k, the stabilizer of a (denoted as St(a)) is the set of all permutations f : E_k → E_k such that f(a) = a.
- Given a partial order (E, ≤), let us call Mon(≤) the interpreted language generated by all functions monotonic on ≤. The *flat ccpo* on E_{k+1} is the partial order ≤_k defined by k ≤_k i for all i ∈ E_{k+1}.

・ 同 ト ・ ヨ ト ・ ヨ ト

Some definitions

- Given a k-valued language F, let us call F⁽¹⁾ the set of unary operators expressible in he language and F⁽¹⁻¹⁾ the group of functions in F⁽¹⁾ which are permutations. For a ∈ E_k, the stabilizer of a (denoted as St(a)) is the set of all permutations f : E_k → E_k such that f(a) = a.
- Given a partial order (E, ≤), let us call Mon(≤) the interpreted language generated by all functions monotonic on ≤. The *flat ccpo* on E_{k+1} is the partial order ≤_k defined by k ≤_k i for all i ∈ E_{k+1}.
- Let f : E_{k+1} → E_{k+1}. The derived set of f, denoted der f, is the set of all functions which can be obtained from f with some (all, none) of its variables replaced by constants. I_A, A ⊆ E_k, is the set of all functions on E_k that preserve the set A. The restriction of f : E_{k+1} → E_{k+1}, denoted re f, is the function re f : E_k → E_{k+1} defined as re f(x₁,...,x_n) = f(x₁,...,x_n), for all x₁,...,x_n ∈ E_k.

The interpreted languages G_k

• G_k is the interpreted language generated by all functions $f: E_{k+1} \rightarrow E_{k+1}$ that satisfy the following conditions:

1. For every
$$g \in \text{der } f$$
, if $g \neq c_k$, then $g \in I_{\{0...k-1\}}$.
2. If $f(a_0, \ldots, a_{n-1}) \neq k$, for some $a_i \in E_{k+1}$ and $a_{i_0} = \ldots = a_{i_j} = k$, for $0 \leq j \leq n-1$ and $0 \leq i_0 \leq \ldots \leq i_j \leq n-1$, then the function

$$\mathsf{re}\,f(a_0,\ldots,a_{i_0-1},x_1,a_{i_0+1},\ldots,a_{i_j-1},x_j,a_{i_j+1},\ldots,a_{n-1})$$

is constant.

The interpreted languages G_k

• G_k is the interpreted language generated by all functions $f: E_{k+1} \rightarrow E_{k+1}$ that satisfy the following conditions:

1. For every
$$g \in \text{der } f$$
, if $g \neq c_k$, then $g \in I_{\{0...k-1\}}$.
2. If $f(a_0, \ldots, a_{n-1}) \neq k$, for some $a_i \in E_{k+1}$ and $a_{i_0} = \ldots = a_{i_j} = k$, for $0 \leq j \leq n-1$ and $0 \leq i_0 \leq \ldots \leq i_j \leq n-1$, then the function

$$\mathsf{re}\,f(a_0,\ldots,a_{i_0-1},x_1,a_{i_0+1},\ldots,a_{i_j-1},x_j,a_{i_j+1},\ldots,a_{n-1})$$

is constant.

Examples:	f_1	0	1	2	3	f_2	0	1	2	3
	0	0	2	1	3	0	1	1	1	2
	1	0	2	1	3	1	0	0	0	2
	2	0	2	0	3	2	2	2	2	0
	3	0	1	2	3	3	3	3	3	3

回 と く ヨ と く ヨ と

The interpreted languages G_k

• G_k is the interpreted language generated by all functions $f: E_{k+1} \rightarrow E_{k+1}$ that satisfy the following conditions:

1. For every
$$g \in \text{der } f$$
, if $g \neq c_k$, then $g \in I_{\{0...k-1\}}$.
2. If $f(a_0, \ldots, a_{n-1}) \neq k$, for some $a_i \in E_{k+1}$ and $a_{i_0} = \ldots = a_{i_j} = k$, for $0 \leq j \leq n-1$ and $0 \leq i_0 \leq \ldots \leq i_j \leq n-1$, then the function

re
$$f(a_0, \ldots, a_{i_0-1}, x_1, a_{i_0+1}, \ldots, a_{i_j-1}, x_j, a_{i_j+1}, \ldots, a_{n-1})$$

is constant.

・ 回 と ・ ヨ と ・ モ と …

▶ 9.Theorem: Let F be a k-valued interpreted language such that every function in F⁽¹⁾ has a fixed point and F⁽¹⁻¹⁾ = St(k). Then either F ⊆ G_k or F ⊆ Mon(≤_k).

- 9.Theorem: Let F be a k-valued interpreted language such that every function in F⁽¹⁾ has a fixed point and F⁽¹⁻¹⁾ = St(k). Then either F ⊆ G_k or F ⊆ Mon(≤_k).
- ► 10.Theorem: Any (k+1)-valued interpreted language F such that every unary function defined in F has a fixed point and F⁽¹⁻¹⁾ = St(k) has the fixed-point property.

・ 同 ト ・ ヨ ト ・ ヨ ト

- 9.Theorem: Let F be a k-valued interpreted language such that every function in F⁽¹⁾ has a fixed point and F⁽¹⁻¹⁾ = St(k). Then either F ⊆ G_k or F ⊆ Mon(≤_k).
- ► 10.Theorem: Any (k+1)-valued interpreted language F such that every unary function defined in F has a fixed point and F⁽¹⁻¹⁾ = St(k) has the fixed-point property.
- ► **11.Corollary**: The four-valued language that contains the constants and the operators

 $\neg_b, \neg_\star, \wedge_{sw}, \downarrow_1^\star, \downarrow_2^\star, \downarrow_3, \rightarrow_I^\star, \leftrightarrow_I^\star, \leftrightarrow_{st}^\star \text{ has the f.p.p.}$

Another four-valued generalization of weak Kleene logic

$$\blacktriangleright \langle \neg_b, \wedge_{ww} \rangle.$$

回 と く ヨ と く ヨ と

æ

Another four-valued generalization of weak Kleene logic

$$\blacktriangleright \langle \neg_b, \wedge_{ww} \rangle.$$

\wedge_{ww}	0	1	2	3	\wedge_{sw}	0	1	2	3
0	0	0	2	3	0	0	0	0	3
1	0	1	2	3	1	0	1	2	3
2	2	2	2	3	2	0	2	2	3
3	3	3	3	3	3	3	3	3	3

► 12. Theorem: The four-valued interpreted language that contains the constants and the operators ¬_b, ∧_{ww}, ↓₂, ↓₃ has the fixed-point property.

白 と く ヨ と く ヨ と

Another four-valued generalization of weak Kleene logic

Sketch of the proof:

Let us call H(G₂) the set of all finitary functions f on E₄ that satisfy the following condition: for all g ∈ der f, if g ≠ c₃, then g ∈ I_{0,1,2} and g ∈ G₂.

ヨット イヨット イヨッ

Sketch of the proof:

- Let us call H(G₂) the set of all finitary functions f on E₄ that satisfy the following condition: for all g ∈ der f, if g ≠ c₃, then g ∈ I_{0,1,2} and g ∈ G₂.
- First step: Show that all the functions expressible in the language satisfy this condition. One can do this by checking the truth tables of the operators ¬_b, ∧_{ww}, ↓₂ and ↓₃, and then proving that H(G₂) is closed under composition of functions.

Sketch of the proof:

- Let us call H(G₂) the set of all finitary functions f on E₄ that satisfy the following condition: for all g ∈ der f, if g ≠ c₃, then g ∈ I_{0,1,2} and g ∈ G₂.
- First step: Show that all the functions expressible in the language satisfy this condition. One can do this by checking the truth tables of the operators ¬_b, ∧_{ww}, ↓₂ and ↓₃, and then proving that H(G₂) is closed under composition of functions.
- Second step: Show that an interpreted language that expresses exactly the functions of $H(G_2)$ has the fixed-point property. Given a stipulation, the valuation that shows that it is consistent is found through a procedure based on the definition of the functions in $H(G_2)$ and the fact that G_2 has the fixed-point.

소리가 소문가 소문가 소문가

Melvin Fitting, Kleene's three-valued logics and their children, *Fundamenta Informaticae*, 20, pp. 113-131, 1994.

Anil Gupta and Nuel Belnap, *The Revision Theory of Truth*, MIT Press, 1993.

José Martínez Fernández, Maximal Three-Valued Clones with the Gupta-Belnap Fixed-Point Theory, *Notre Dame Journal of Formal Logic*, 48, 4, pp. 449-472, 2007.

Albert Visser, Semantics and the Liar Paradox, in D. Gabbay and F. Guenthner (eds.), *Handbook of Philosophical Logic*, vol. 4, Reidel, 1984, pp. 617-706.

► Let us say that a partial order (E, ≤) is stable if all monotonic functions from E to E have a fixed point.

通 とう ほうとう ほうど

- Let us say that a partial order (E, ≤) is stable if all monotonic functions from E to E have a fixed point.
- ▶ 13. Theorem: Let (E_k, ≤) (k ≥ 2) be a stable partial order and F ⊆ O_k a clone such that F⁽¹⁾ ⊆ (Mon ≤)⁽¹⁾. Then F has the fixed-point property.