Argumentation Logic

Antonis Kakas Francesca Toni Paolo Mancarella

Department of Computer Science

University of Cyprus

Department of Computing Imperial College London

Dipartimento di Informatica Universita di Pisa

16th July, 2013

Panhellenic Logic Symposium Athens

AL Introduction

- A re-examination of "classical" logical reasoning - Propositional Logic- as a Logic of Arguments.
 - Closer to original inception of logic?
 Closer to Common Sense Human Reasoning?
- Methods: Argumentation Theory from Al and Syllogistic Roots of Logic
 - Natural Acceptability Semantics for Argumentation
 Re-examine Reductio ad Absurdum in Natural Deduction

Motivation from Al

Computing and Artificial Intelligence

Common Sense Human Reasoning?

- Default Reasoning, e.g. Temporal Persistence
- Reasoning about actions and change
- Knowledge Qualification, e.g. Resolving contradictory information, or Legal Reasoning

Text Comprehension

- "I am attending the 8th Panhellenic Logic Symposium in Athens in July."
 - Elaborative Inferences, e.g. "I will be in Athens sometime in July", "I am an academic/logician"...
 - Conflict resolution, e.g. 8th PLS?

□ Case of "Logic from Computer Science".

The (traditional) logic side of things

Part 1: "Syllogistic roots" of Logic

- Consider Propositional Logic (PL) and its Natural Deduction (ND) proof system.
- Separate out the Reductio ad Absurdum (RA) rule (¬I rule) as a different type of proof rule or argument.
 Is it an argument at all? Is RA an axiomatic part of Logic?
- □ Call (c.f. Archimedes) the rest of ND, Direct Logic/Proofs, _____

Direct Logic: basic logic underlying Argumentation Logic

□ Note that in any RA derivation, $[\phi \dots \dots \bot]$, we have a direct derivation of the contradiction.

Reductio ad Absurdum in ND Example 1

 $\square \quad \mathsf{T1} = \{\neg \ (p \land q), \neg \ q \to \bot\}$

Note 1: Direct (sub) proofs under $Delay_{MRA}$: " $Delay_{ND}$ minus RA" Note 2: Relevance of hypothesis to inconsistency: Genuine Absurdity Property

7

Reductio ad Absurdum in ND Example 2

D T2 = { \neg (\neg p \land \neg q)} \vdash_{ND} p v q

8

Genuine RAND derivations

Do Genuine RAND derivations always exist?

AL equivalent to PL ("restricted" to \neg , \land)

□ Main Lemma: For consistent theories (in ¬, ∧) if there is a RAND derivation from \$\oppi\$ then there is a Genuine RAND derivation from \$\oppi\$.

Proof: Is this result known?

Hence the Restricted form of RA does not compromise completeness of ND.

Equivalence through the universality of \neg , \wedge .

- □ If we interpret V and \rightarrow through their classical equivalence in terms of \neg , \land then AL=PL.
- But this is not necessary (see below part 2).

The Argumentation side of things

The other Argumentation side

Can we see Logic as a Theory of Arguments?

- How can we do this?
 - Can we have Logical Formulae as Arguments?
 - Entailment through Acceptable Arguments?
- How can we link this to Classical logic (PL)?
 - Reformulate PL as a Logic of Arguments?
- Can we formulate Natural Deduction with restricted Reductio ad Absurdum as a Logic of Arguments?
 - Using argumentation theory/semantics from AI?
 - **Build** on the "success" of Argumentation in Al and CSR.

Argumentation Interpretation of Reduction ad Absurdum - Informal

14

Central Idea of Argumentation Logic

- 15
- Logical Formulae as Arguments. Arguments attack each other through a Direct Derivation of inconsistency.
- Argumentation Framework <Args, Att, Def> for Logic:
 - Args: Sets of Propositional Formulae: Δ (Direct proofs from Δ and the given theory, T)
 - = Att: A attacks Δ : T $\cup \Delta \cup A \vdash_{MRA} \bot$
 - Def: Def <u>C</u> Att
- Recover Reductio ad Absurdum through the semantics of argumentation. BUT WHICH SEMANTICS?

□ The problem of Logic ανάγεται to the question: What is a good, or acceptable, argument?

Argumentation Interpretation of Reduction ad Absurdum

Argumentation in Al - Basics

Argumentation Framework: <Args, Attacks, Defence>

 \square Semantics: Δ is an **admissible** set of arguments iff:

- ⊿ does not attack itself.
- \blacksquare <u>A</u> defends against all sets that attack it:
 - ⊿ attacks back A.
- Is the Admissible semantics "complete"?
 - What if an attack is by itself "no good", e.g. self-attacking?
 - Do we still need to explicitly defend/attack it back?

Admissibility semantics => Acceptability semantics

Acceptability Semantics Informal Motivation

□ Acceptability: Follow the "universal" intuition:

An argument (or a set of arguments) can be accepted iff all its counter-arguments can be <mark>rejected</mark>

Can we formalize directly this intuition?

How are we to understand the "Rejection of Arguments"?

■ As "Can not be Accepted"?

An argument can play a role in rejecting its counterarguments

■ The Acceptance of arguments is a **RELATIVE** notion.

Acceptability Semantics Definition

 \Box A set Δ is acceptable relative to Δ ': Acc(Δ , Δ ').

```
Acc(\Delta,\Delta') iff \Delta \subseteq \Delta', or
for any A s.t. A attacks \Delta:
there exists D s.t. D defends/attacks back A
and acc(D, \Delta' \cup \Delta \cup A).
```

Acceptability, Acc(-,-), is defined as the least fixed point of a monotonic operator, F_{ACC}, on the binary relations on sets of arguments.

 \Box Acceptability Semantics: Δ is acceptable iff Acc(Δ ,{}) holds.

Central use of Acceptability Semantics

Acceptability of arguments is a relative notion.

- Captures a semantic notion of self-defeating (set of) argument(s):
 - S is self-defeating iff there exists an attacking set, A, against S such that ¬Acc(A, {}) and Acc(A, S) hold.
- Self-defeating S: renders one of its attacks acceptable
 This is a kind of Reductio ad Absurdum Principle!

Acceptability deals with (odd) cycles of attacks.
 Compare with "cyclic reasoning" of Reduction ad Absurdum!

Argumentation Logic Self-defeat ↔ Reductio ad Absurdum

ϕ Is AL-entailed iff_{def} ACC({ ϕ },{}) and ¬ACC({¬ ϕ },{})

Theorem

$\neg Acc(\{\phi\},\{\}) \iff Genuine RAND derivation for \phi$

Corollary (from Lemma) For consistent T: AL = PL

Argumentation Logic Results (1)

- AL distinguishes two forms of Inconsistency of T
 - Classically inconsistent but directly consistent (under |_{MRA})
 Violation of rule of «Excluded Middle».
 - For some, φ, neither φ nor ¬φ is acceptable: T = { a → ⊥, ¬a → ⊥}
 a v ¬a not AL-entailed, but b v ¬ b is AL-entailed

Directly inconsistent

■ For some ϕ , T has a direct argument for ϕ and $\neg \phi$: T = { ϕ , $\neg \phi$ }

AL is a paraconsistent logic.

Example of Directly Consistent: Logical Paradox "Not a contradiction but a paradox"

"A barber shaves anyone that does not shave himself"

□ ¬ ShavesHimself(Person)→ ShavedByBarber(Person)
 □ ShavesHimself(Person) → ¬ ShavedByBarber(Person)

Self-reference: When Person = barber

ShavedByBarber(barber) → ShavesHimself(barber)
 ¬ ShavedByBarber(barber) → ¬ ShavesHimself(barber)

Logic Paradox Example in AL

- Classically Inconsistent due to the law of excluded middle
 SB(P) or ¬ SB(P), for any person P, even for P=barber.
- In AL the law of excluded middle for SB(b) does not hold
 ¬ ACC({SB(b)},{})
 SB(b) is non-acceptable
 ¬ ACC({¬SB(b)},{})
 SB(b) is non-acceptable
 - The law (SB(b) v ¬ SB(b)) is non-acceptable.

AL gives up the law of excluded middle (when needed)!

Argumentation Logic Results (2)

□ For classically consistent theories AL = PL (for the restricted language of ¬ and ∧)

25

- □ But we can define AL directly on the whole language of PL with V and \rightarrow
 - □ Interpretation of implication in AL differs from PL, e.g.
 ■Both a→b and ¬(a→b) are acceptable w.r.t. to T={¬a}
- □ Can also take different Direct Logic underlying AL.

AL – What does it mean?

Computing (on the Web) today is "demanding" Common Sense Human Reasoning

Human oriented Computing: Agency + Human Interaction

"I am attending the 8th Panhellenic Logic Symposium in Athens in July."

"Conjecture:" For Common Sense Reasoning we need to challenge Classical Logic.

- QUERY: "I am attending the 8th Panhellenic Logic Symposium in Athens in July. Please suggest places to stay."
 - Data/Information integration over the database/Knowledge base of the Web
- ANSWER: "The Golden Age hotel : this is close to the Music Hall where a concert will take place in its gardens."
 - Personalized, Justified (and persuasive) recommendations

Conclusions

29

- A reformulation of PL in terms of argumentation under acceptability semantics => Argumentation Logic (AL)
 - AL is a conservative extension of PL into a type of Relevance Paraconsistent Logic
 - Only genuine use of Reductio ad Absurdum
 - Implication in AL differs from classical material implication
- Implication is a hybrid of default rule and contrapositive reasoning
 UNIFY classical and defeasible reasoning under argumentation???
- This questioning of CL by AL is rooted in (a part of) "Al Computing" that needs the automation of Common Sense Human Reasoning
 - Not driven from the needs of strict Mathematical Reasoning but from open Human Reasoning, e.g. Natural Language or "linguistic" reasoning.

AL – What does it mean?

- Philosophy (of Science):
 - Logic Describes vs Logic Captures
 - Logic: Language vs Realism