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Definability

Semibounded group = group definable in a semibounded structure.

I Let M be an L-structure. We call X ⊆ Mn definable (in M)
if there is a formula φ(x̄ , ȳ) ∈ L and parameters ā ∈ Mk , such
that

X = {b̄ ∈ Mn :M |= φ(b̄, ā)}.

Example

S1 = {(x , y) ∈ R2 : x2 + y2 = 1} is definable in 〈R, <,+, ·, 0, 1〉,
but not in 〈R, <,+, 0〉.

I f : A ⊆ Mm → Mn is definable if Γ(f ) ⊆ Mm ×Mn is
definable.



Definability

Semibounded group = group definable in a semibounded structure.

I Let M be an L-structure. We call X ⊆ Mn definable (in M)
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Definable groups

I A group G = 〈G , ∗, eG〉 is definable if G ⊆ Mn and
∗ : M2n → Mn are definable.

Example

1. The circle S1 with complex multiplication is a group definable
〈R, <,+, ·, 0, 1〉.
2. Algebraic groups are definable in algebraically closed fields.
3. Compact real Lie groups are definable in o-minimal expansions
of the real field.

I Applications: Hrushovski’s proof of the function field
Modell-Lang conjecture in all characteristics makes use of
groups definable in certain structures.
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O-minimal structures

Definition (Dries 1982, Pillay-Steinhorn 1986)

A densely linearly ordered structure M = 〈M, <, . . .〉 is called
o-minimal (order-minimal) if every definable subset of M is a finite
union of open intervals (a, b), a, b ∈ M ∪ {±∞}, and points.

I on M we have the <-topology,

I on Mn we have the product topology.

I every definable function f : Mn → M is piecewise continuous,

I every definable subset X ⊆ Mn is a finite union of definably
homeomorphic images of open boxes

Definition
For every definable X ⊆ Mn,

dim(X ) = max{k : X contains a k-box I k up to definable

bijection, where I is an open interval in M.}
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O-minimal structures

1. R = 〈R, <,+, ·〉, a real closed field

2. Rvect = 〈R, <,+, {x 7→ rx}r∈R〉, an ordered vector space over
R.

semialgebraic = definable in R
semilinear = definable in Rvect

Question. (van den Dries, 80’s): Is there a structure N whose
class of definable sets lies strictly between that of semilinear and
semialgebraic sets?
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Semibounded structures

Answer. Yes. Consider N = 〈Rvect ,B〉 where
B bounded semialgebraic but not semilinear (such as S1).

[Pillay-Scowcroft-Steinhorn (1989)]: N does not define
· : R× R→ R

Remark (Marker-Peterzil-Pillay 1992)

If R = R, then N is the unique structure whose class of definable
sets lies strictly between that of Rvect and R.

I N is called semibounded.

semibounded = definable in N
Next: semilinear, semibounded, semialgebraic groups.
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Groups definable in o-minimal structures

Let M be an o-minimal structure.

Theorem (Pillay 1988)

A definable group G is a topological group.

I G is (definably) connected if it contains no proper definable
clopen subset.

I G is (definably) compact if for every definable σ : (a, b)→ G ,
limx→b− σ(x) exists (in G ).
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Semilinear groups

Let Rvect = 〈R, <,+, 0, {x 7→ rx}r∈R〉. Let Ga = 〈[0, a),⊕, 0〉 with

x ⊕ y =

{
x + y , if x + y < a

x + y − a if x + y ≥ a

Ga is ‘quotient by a lattice’

Ga
∼= Ua/Za,

where Ua =
⋃

n[−na, na] 6 〈R,+〉, generated by [−a, a].



Semilinear groups

Let Rvect = 〈R, <,+, 0, {x 7→ rx}r∈R〉. Let Ga = 〈[0, a),⊕, 0〉 with

x ⊕ y =

{
x + y , if x + y < a

x + y − a if x + y ≥ a

Ga is ‘quotient by a lattice’

Ga
∼= Ua/Za,

where Ua =
⋃

n[−na, na] 6 〈R,+〉, generated by [−a, a].



Semilinear groups - Structure Theorem

Theorem (E - 2007)

Let G be an abelian, connected, compact group definable in Rvect

with dim(G ) = n. Then
G ∼= U/L

where

I U is an open subgroup of 〈Rn,+〉 generated by a semilinear
set

I L = Za1 + · · ·+ Zan is a subgroup of U, generated by
Z-independent a1, . . . , an.

I Moreover, the isomorphism is ‘definable’. Namely, there there
is a semilinear S ⊆ U (fundamental domain) such that

G ∼=definably 〈S ,+L〉.
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Semialgebraic groups - Structure Theorem fails

Let 〈R, <,+, ·, 0, 1〉 be a real closed field. Let G×b = 〈[1, b),⊗, 1〉
with:

x ⊗ y =

{
xy , if xy < b

xy/b if xy ≥ b

We have:
(∗) G×b

∼= 〈R>0, ·〉/bZ

But

I G×b is not definably isomorphic to Ga, because such an
isomorphism would require the existence of an exponential
function.

I it is unclear what could be a higher dimensional analogue of
(*).
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Let N = 〈Rvect ,B〉 be a semibounded structure.

Question. (Peterzil 2009): Let G be definable in N . Is G ∼= U/L,
where U contains a suitable subgroup of 〈Rn,+〉 rather than being
itself such?

Example

Let N = 〈Rvect ,G
×
b 〉.

Then Ga × G×b is definable in N .

I Ga × G×b
∼= U/L, where U = Ua × G×b and L = Z(a, 0).
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Semibounded groups - Structure Theorem

Theorem (E-Peterzil (2012))

Let G be an abelian, connected, compact group definable in N
with dim(G ) = n. Then

G ∼= U/L

I U is the group extension of S by H, where
I S is a semialgebraic group
I H is an open subgroup of 〈Rk ,+〉 generated by a semilinear set

I L = Za1 + · · ·+ Zak is a subgroup of U, generated by
Z-independent a1, . . . , ak .

I k = ldimG , the linear dimension of G, is an invariant that
counts how semilinear G is.
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General project

Given a structure N = 〈M,P〉,
I define, for every definable set X , an invariant (M-dimension)

that counts ‘how M-definable’ X is

I prove structure theorems that ‘split’ definable groups into
their M-definable and P-definable parts.

For example, N = 〈R,Qrc〉, 〈R, 2Q〉, 〈R, 2Z〉.
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