Pantelis E. Eleftheriou

University of Waterloo

PLS9, Athens - July 15-18, 2013

Semibounded group = group definable in a semibounded structure.

Semibounded group = group definable in a semibounded structure.

▶ Let \mathcal{M} be an \mathcal{L} -structure. We call $X \subseteq M^n$ definable (in \mathcal{M}) if there is a formula $\phi(\bar{x}, \bar{y}) \in \mathcal{L}$ and parameters $\bar{a} \in M^k$, such that

$$X = \{\bar{b} \in M^n : \mathcal{M} \models \phi(\bar{b}, \bar{a})\}.$$

Semibounded group = group definable in a semibounded structure.

▶ Let \mathcal{M} be an \mathcal{L} -structure. We call $X \subseteq M^n$ definable (in \mathcal{M}) if there is a formula $\phi(\bar{x}, \bar{y}) \in \mathcal{L}$ and parameters $\bar{a} \in M^k$, such that

$$X = \{\bar{b} \in M^n : \mathcal{M} \models \phi(\bar{b}, \bar{a})\}.$$

Example

 $S^1=\{(x,y)\in\mathbb{R}^2:x^2+y^2=1\}$ is definable in $\langle\mathbb{R},<,+,\cdot,0,1\rangle$, but not in $\langle\mathbb{R},<,+,0\rangle$.

Semibounded group = group definable in a semibounded structure.

▶ Let \mathcal{M} be an \mathcal{L} -structure. We call $X \subseteq M^n$ definable (in \mathcal{M}) if there is a formula $\phi(\bar{x}, \bar{y}) \in \mathcal{L}$ and parameters $\bar{a} \in M^k$, such that

$$X = \{\bar{b} \in M^n : \mathcal{M} \models \phi(\bar{b}, \bar{a})\}.$$

Example

 $S^1=\{(x,y)\in\mathbb{R}^2:x^2+y^2=1\}$ is definable in $\langle\mathbb{R},<,+,\cdot,0,1\rangle$, but not in $\langle\mathbb{R},<,+,0\rangle$.

▶ $f: A \subseteq M^m \to M^n$ is definable if $\Gamma(f) \subseteq M^m \times M^n$ is definable.

▶ A group $G = \langle G, *, e_G \rangle$ is *definable* if $G \subseteq M^n$ and $*: M^{2n} \to M^n$ are definable.

▶ A group $G = \langle G, *, e_G \rangle$ is *definable* if $G \subseteq M^n$ and $*: M^{2n} \to M^n$ are definable.

Example

1. The circle S^1 with complex multiplication is a group definable $\langle \mathbb{R}, <, +, \cdot, 0, 1 \rangle$.

▶ A group $G = \langle G, *, e_G \rangle$ is *definable* if $G \subseteq M^n$ and $*: M^{2n} \to M^n$ are definable.

- 1. The circle S^1 with complex multiplication is a group definable $\langle \mathbb{R}, <, +, \cdot, 0, 1 \rangle$.
- 2. Algebraic groups are definable in algebraically closed fields.

▶ A group $G = \langle G, *, e_G \rangle$ is *definable* if $G \subseteq M^n$ and $*: M^{2n} \to M^n$ are definable.

- 1. The circle S^1 with complex multiplication is a group definable $\langle \mathbb{R}, <, +, \cdot, 0, 1 \rangle$.
- 2. Algebraic groups are definable in algebraically closed fields.
- 3. Compact real Lie groups are definable in o-minimal expansions of the real field.

▶ A group $G = \langle G, *, e_G \rangle$ is *definable* if $G \subseteq M^n$ and $*: M^{2n} \to M^n$ are definable.

- 1. The circle S^1 with complex multiplication is a group definable $\langle \mathbb{R}, <, +, \cdot, 0, 1 \rangle$.
- 2. Algebraic groups are definable in algebraically closed fields.
- 3. Compact real Lie groups are definable in o-minimal expansions of the real field.
 - Applications: Hrushovski's proof of the function field Modell-Lang conjecture in all characteristics makes use of groups definable in certain structures.

Definition (Dries 1982, Pillay-Steinhorn 1986)

A densely linearly ordered structure $\mathcal{M}=\langle M,<,\ldots \rangle$ is called o-minimal (order-minimal) if every definable subset of M is a finite union of open intervals (a,b), $a,b\in M\cup \{\pm\infty\}$, and points.

Definition (Dries 1982, Pillay-Steinhorn 1986)

A densely linearly ordered structure $\mathcal{M} = \langle M, <, \ldots \rangle$ is called o-minimal (order-minimal) if every definable subset of M is a finite union of open intervals (a,b), $a,b \in M \cup \{\pm \infty\}$, and points.

- on M we have the <-topology,</p>
- ightharpoonup on M^n we have the product topology.
- every definable function $f: M^n \to M$ is piecewise continuous,
- every definable subset $X \subseteq M^n$ is a finite union of definably homeomorphic images of open boxes

Definition (Dries 1982, Pillay-Steinhorn 1986)

A densely linearly ordered structure $\mathcal{M} = \langle M, <, \ldots \rangle$ is called o-minimal (order-minimal) if every definable subset of M is a finite union of open intervals (a,b), $a,b \in M \cup \{\pm \infty\}$, and points.

- ▶ on M we have the <-topology,</p>
- ightharpoonup on M^n we have the product topology.
- every definable function $f: M^n \to M$ is piecewise continuous,
- every definable subset $X \subseteq M^n$ is a finite union of definably homeomorphic images of open boxes

Definition

For every definable $X \subseteq M^n$,

 $dim(X) = max\{k : X \text{ contains a } k\text{-box } I^k \text{ up to definable bijection, where } I \text{ is an open interval in } M.\}$

1. $\mathcal{R} = \langle R, <, +, \cdot \rangle$, a real closed field

- 1. $\mathcal{R} = \langle R, <, +, \cdot \rangle$, a real closed field
- 2. $\mathcal{R}_{vect} = \langle R, <, +, \{x \mapsto rx\}_{r \in R} \rangle$, an ordered vector space over R.

- 1. $\mathcal{R} = \langle R, <, +, \cdot \rangle$, a real closed field
- 2. $\mathcal{R}_{vect} = \langle R, <, +, \{x \mapsto rx\}_{r \in R} \rangle$, an ordered vector space over R.

 $semialgebraic = definable in \mathcal{R}$ $semilinear = definable in \mathcal{R}_{vect}$

- 1. $\mathcal{R} = \langle R, <, +, \cdot \rangle$, a real closed field
- 2. $\mathcal{R}_{vect} = \langle R, <, +, \{x \mapsto rx\}_{r \in R} \rangle$, an ordered vector space over R.

 $semialgebraic = definable in \mathcal{R}$ $semilinear = definable in \mathcal{R}_{vect}$

Question. (van den Dries, 80's): Is there a structure ${\cal N}$ whose class of definable sets lies strictly between that of semilinear and semialgebraic sets?

Answer. Yes. Consider $\mathcal{N} = \langle \mathcal{R}_{vect}, B \rangle$ where B bounded semialgebraic but not semilinear (such as S^1).

Answer. Yes. Consider $\mathcal{N} = \langle \mathcal{R}_{vect}, \mathcal{B} \rangle$ where \mathcal{B} bounded semialgebraic but not semilinear (such as S^1). [Pillay-Scowcroft-Steinhorn (1989)]: \mathcal{N} does not define $\cdot : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$

Answer. Yes. Consider $\mathcal{N} = \langle \mathcal{R}_{vect}, B \rangle$ where B **bounded** semialgebraic but not semilinear (such as S^1). [Pillay-Scowcroft-Steinhorn (1989)]: \mathcal{N} does not define $\cdot : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$

Remark (Marker-Peterzil-Pillay 1992)

If $R = \mathbb{R}$, then \mathcal{N} is the unique structure whose class of definable sets lies strictly between that of \mathcal{R}_{vect} and \mathcal{R} .

Answer. Yes. Consider $\mathcal{N} = \langle \mathcal{R}_{vect}, B \rangle$ where B **bounded** semialgebraic but not semilinear (such as S^1). [Pillay-Scowcroft-Steinhorn (1989)]: \mathcal{N} does not define $\cdot : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$

Remark (Marker-Peterzil-Pillay 1992)

If $R = \mathbb{R}$, then \mathcal{N} is the unique structure whose class of definable sets lies strictly between that of $\mathcal{R}_{\text{vect}}$ and \mathcal{R} .

 $\triangleright \mathcal{N}$ is called *semibounded*.

Answer. Yes. Consider $\mathcal{N} = \langle \mathcal{R}_{vect}, B \rangle$ where B **bounded** semialgebraic but not semilinear (such as S^1). [Pillay-Scowcroft-Steinhorn (1989)]: \mathcal{N} does not define $\cdot : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$

Remark (Marker-Peterzil-Pillay 1992)

If $R = \mathbb{R}$, then \mathcal{N} is the unique structure whose class of definable sets lies strictly between that of \mathcal{R}_{vect} and \mathcal{R} .

N is called semibounded.

 $semibounded = definable in \mathcal{N}$

Answer. Yes. Consider $\mathcal{N} = \langle \mathcal{R}_{vect}, B \rangle$ where B **bounded** semialgebraic but not semilinear (such as S^1). [Pillay-Scowcroft-Steinhorn (1989)]: \mathcal{N} does not define $\cdot : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$

Remark (Marker-Peterzil-Pillay 1992)

If $R = \mathbb{R}$, then \mathcal{N} is the unique structure whose class of definable sets lies strictly between that of \mathcal{R}_{vect} and \mathcal{R} .

N is called semibounded.

 $semibounded = definable in \mathcal{N}$

Next: semilinear, semibounded, semialgebraic groups.

Groups definable in o-minimal structures

Let \mathcal{M} be an o-minimal structure.

Theorem (Pillay 1988)

A definable group G is a topological group.

Groups definable in o-minimal structures

Let \mathcal{M} be an o-minimal structure.

Theorem (Pillay 1988)

A definable group G is a topological group.

- ► *G* is (*definably*) *connected* if it contains no proper definable clopen subset.
- ▶ G is (definably) compact if for every definable $\sigma:(a,b)\to G$, $\lim_{x\to b^-}\sigma(x)$ exists (in G).

Semilinear groups

Let
$$\mathcal{R}_{vect} = \langle R, <, +, 0, \{x \mapsto rx\}_{r \in R} \rangle$$
. Let $G_a = \langle [0, a), \oplus, 0 \rangle$ with
$$x \oplus y = \begin{cases} x + y, & \text{if } x + y < a \\ x + y - a & \text{if } x + y \geq a \end{cases}$$

Semilinear groups

Let
$$\mathcal{R}_{vect} = \langle R, <, +, 0, \{x \mapsto rx\}_{r \in R} \rangle$$
. Let $G_a = \langle [0, a), \oplus, 0 \rangle$ with
$$x \oplus y = \begin{cases} x + y, & \text{if } x + y < a \\ x + y - a & \text{if } x + y \ge a \end{cases}$$

 G_a is 'quotient by a lattice'

$$G_a \cong U_a/\mathbb{Z}a$$
,

where $U_a = \bigcup_n [-na, na] \leqslant \langle R, + \rangle$, generated by [-a, a].

Semilinear groups - Structure Theorem

Theorem (E - 2007)

Let G be an abelian, connected, compact group definable in R_{vect} with dim(G) = n. Then

$$G\cong U/L$$

Semilinear groups - Structure Theorem

Theorem (E - 2007)

Let G be an abelian, connected, compact group definable in R_{vect} with dim(G) = n. Then

$$G\cong U/L$$

where

- ▶ *U* is an open subgroup of $\langle R^n, + \rangle$ generated by a semilinear set
- ▶ $L = \mathbb{Z}a_1 + \cdots + \mathbb{Z}a_n$ is a subgroup of U, generated by \mathbb{Z} -independent a_1, \dots, a_n .

Semilinear groups - Structure Theorem

Theorem (E - 2007)

Let G be an abelian, connected, compact group definable in R_{vect} with $\dim(G) = n$. Then

$$G\cong U/L$$

where

- ▶ *U* is an open subgroup of $\langle R^n, + \rangle$ generated by a semilinear set
- ▶ $L = \mathbb{Z}a_1 + \cdots + \mathbb{Z}a_n$ is a subgroup of U, generated by \mathbb{Z} -independent a_1, \dots, a_n .
- ▶ Moreover, the isomorphism is 'definable'. Namely, there there is a semilinear $S \subseteq U$ (fundamental domain) such that

$$G \cong_{definably} \langle S, +_L \rangle.$$

Let $\langle R,<,+,\cdot,0,1\rangle$ be a real closed field. Let $G_b^\times=\langle [1,b),\otimes,1\rangle$ with:

$$x \otimes y = \begin{cases} xy, & \text{if } xy < b \\ xy/b & \text{if } xy \ge b \end{cases}$$

Let $\langle R,<,+,\cdot,0,1\rangle$ be a real closed field. Let $G_b^\times=\langle [1,b),\otimes,1\rangle$ with:

$$x \otimes y = \begin{cases} xy, & \text{if } xy < b \\ xy/b & \text{if } xy \ge b \end{cases}$$

We have:

(*)
$$G_b^{\times} \cong \langle R^{>0}, \cdot \rangle / b^{\mathbb{Z}}$$

Let $\langle R,<,+,\cdot,0,1\rangle$ be a real closed field. Let $G_b^\times=\langle [1,b),\otimes,1\rangle$ with:

$$x \otimes y = \begin{cases} xy, & \text{if } xy < b \\ xy/b & \text{if } xy \ge b \end{cases}$$

We have:

(*)
$$G_b^{\times} \cong \langle R^{>0}, \cdot \rangle / b^{\mathbb{Z}}$$

But

▶ G_b^{\times} is not *definably* isomorphic to G_a , because such an isomorphism would require the existence of an exponential function.

Let $\langle R,<,+,\cdot,0,1\rangle$ be a real closed field. Let $G_b^\times=\langle [1,b),\otimes,1\rangle$ with:

$$x \otimes y = \begin{cases} xy, & \text{if } xy < b \\ xy/b & \text{if } xy \ge b \end{cases}$$

We have:

(*)
$$G_b^{\times} \cong \langle R^{>0}, \cdot \rangle / b^{\mathbb{Z}}$$

But

- ▶ G_b^{\times} is not *definably* isomorphic to G_a , because such an isomorphism would require the existence of an exponential function.
- it is unclear what could be a higher dimensional analogue of (*).

Let $\mathcal{N} = \langle \mathcal{R}_{\textit{vect}}, \mathcal{B} \rangle$ be a semibounded structure.

Let $\mathcal{N} = \langle \mathcal{R}_{\textit{vect}}, B \rangle$ be a semibounded structure.

Question. (Peterzil 2009): Let G be definable in \mathcal{N} . Is $G \cong U/L$, where U contains a suitable subgroup of $\langle R^n, + \rangle$ rather than being itself such?

Let $\mathcal{N} = \langle \mathcal{R}_{vect}, B \rangle$ be a semibounded structure.

Question. (Peterzil 2009): Let G be definable in \mathcal{N} . Is $G \cong U/L$, where U contains a suitable subgroup of $\langle R^n, + \rangle$ rather than being itself such?

Let
$$\mathcal{N} = \langle \mathcal{R}_{vect}, \mathcal{G}_{b}^{\times} \rangle$$
.

Let $\mathcal{N} = \langle \mathcal{R}_{\textit{vect}}, B \rangle$ be a semibounded structure.

Question. (Peterzil 2009): Let G be definable in \mathcal{N} . Is $G \cong U/L$, where U contains a suitable subgroup of $\langle R^n, + \rangle$ rather than being itself such?

Example

Let
$$\mathcal{N} = \langle \mathcal{R}_{\textit{vect}}, \textit{G}_{\textit{b}}^{\times} \rangle$$
.

Then $G_a \times G_b^{\times}$ is definable in \mathcal{N} .

Let $\mathcal{N} = \langle \mathcal{R}_{\textit{vect}}, B \rangle$ be a semibounded structure.

Question. (Peterzil 2009): Let G be definable in \mathcal{N} . Is $G\cong U/L$, where U contains a suitable subgroup of $\langle R^n,+\rangle$ rather than being itself such?

Example

Let
$$\mathcal{N} = \langle \mathcal{R}_{\textit{vect}}, \textit{G}_{\textit{b}}^{\times} \rangle$$
.

Then $G_a \times G_b^{\times}$ is definable in \mathcal{N} .

$$ightharpoonup G_a imes G_b^ imes \cong U/L$$
, where $U = U_a imes G_b^ imes$ and $L = \mathbb{Z}(a,0)$.

Semibounded groups - Structure Theorem

Theorem (E-Peterzil (2012))

Let G be an abelian, connected, compact group definable in $\mathcal N$ with $\dim(G)=n$. Then

$$G\cong U/L$$

Semibounded groups - Structure Theorem

Theorem (E-Peterzil (2012))

Let G be an abelian, connected, compact group definable in $\mathcal N$ with $\dim(G)=n$. Then

$$G\cong U/L$$

- U is the group extension of S by H, where
 - ► S is a semialgebraic group
 - ightharpoonup H is an open subgroup of $\langle R^k, + \rangle$ generated by a semilinear set
- ▶ $L = \mathbb{Z}a_1 + \cdots + \mathbb{Z}a_k$ is a subgroup of U, generated by \mathbb{Z} -independent a_1, \ldots, a_k .

Semibounded groups - Structure Theorem

Theorem (E-Peterzil (2012))

Let G be an abelian, connected, compact group definable in $\mathcal N$ with $\dim(G)=n$. Then

$$G\cong U/L$$

- U is the group extension of S by H, where
 - ► S is a semialgebraic group
 - ightharpoonup H is an open subgroup of $\langle R^k, + \rangle$ generated by a semilinear set
- ▶ $L = \mathbb{Z}a_1 + \cdots + \mathbb{Z}a_k$ is a subgroup of U, generated by \mathbb{Z} -independent a_1, \ldots, a_k .
- k = Idim G, the linear dimension of G, is an invariant that counts how semilinear G is.

General project

Given a structure $\mathcal{N} = \langle \mathcal{M}, P \rangle$,

- define, for every definable set X, an invariant (\mathcal{M} -dimension) that counts 'how \mathcal{M} -definable' X is
- ▶ prove structure theorems that 'split' definable groups into their \mathcal{M} -definable and P-definable parts.

General project

Given a structure $\mathcal{N} = \langle \mathcal{M}, P \rangle$,

- define, for every definable set X, an invariant (\mathcal{M} -dimension) that counts 'how \mathcal{M} -definable' X is
- ▶ prove structure theorems that 'split' definable groups into their \mathcal{M} -definable and P-definable parts.

For example, $\mathcal{N}=\langle\overline{\mathbb{R}},\mathbb{Q}^{rc}\rangle$, $\langle\overline{\mathbb{R}},2^{\mathbb{Q}}\rangle$, $\langle\overline{\mathbb{R}},2^{\mathbb{Z}}\rangle$.