The existential fragment 000000000

Full RML 00000

イロト イロト イヨト イヨト ヨー クタウ

Thank you

Closing a Gap in the Complexity of Refinement Modal Logic

Antonis Achilleos¹ Michael Lampis²

1. Graduate Center, City University of New York aachilleos@gc.cuny.edu

> 2. KTH Royal Institute of Technology mlampis@kth.se

> > July 18, 2013

The existential fragment

Full RML 00000

Thank you

Sac

Outline

Refinement Modal Logic Who? When? What? Why? Defining RML

The existential fragment A tableau procedure

Full RML Background Closing the Gaps

The existential fragment

Full RML 00000

Thank you

Sac

You (we) are here:

Refinement Modal Logic Who? When? What? Why? Defining RML

The existential fragment A tableau procedure

Full RML Background Closing the Gaps

The existential fragment

Full RML 00000

イロト イロト イヨト イヨト ヨー クタウ

Thank you

Refinement Modal Logic

Who and When?

Defined by Bozzeli, van Ditmarsch and French in 2012.

The complexity of RML satisfiability was studied by Bozzeli, van Ditmarsch and Pinchinat in 2012.

We give a modification of their methods to close the gaps in complexity from BvDP 2012.

The existential fragment

Full RML 00000

イロト イロト イヨト イヨト ヨー クタウ

Thank you

Refinement Modal Logic What?

An extension of the basic normal modal logic, K.

Includes quantifiers \exists_r and \forall_r . Intuitively, $\exists_r \phi$ is true in a state of a model if there is a refinement of the original model where ϕ is true.

Think of refinements as submodels until we define them in a few slides.

The existential fragment

Full RML 00000 Thank you

Refinement Modal Logic Why?

The goal is to model situations where information is added along the way.

From BvDP 2012:

... refinement quantification has applications in many settings: in logics for games ... it may correspond to a player discarding some moves; for program logics ... it may correspond to operational refinement; and for logics for spatial reasoning, it may correspond to subspace projections ...

◆ロト ◆母 ト ◆臣 ト ◆臣 ト ○日 - ○○○

The existential fragment

Full RML 00000

Thank you

Refinement Modal Logic _{Syntax}

Propositional variables: p, q, \ldots

 $\phi ::= p \mid \neg p \mid \phi \land \phi \mid \phi \lor \phi \mid \Diamond \phi \mid \Box \phi \mid \exists_r \phi \mid \forall_r \phi$

If p is a propositional variable, then $p, \neg p$ are literals.

Notice that (for convenience) negations are allowed only at the propositional level.

The existential fragment of RML, RML^{\exists_r} allows only formulas without \forall_r .

 \top, \bot as short for a tautology and a contradiction respectively.

The existential fragment

Full RML 00000

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Thank you

Models, Bisimulations, Refinements Models

We consider the standard Kripke models for modal logic K: $\mathcal{M} = (W, R, V)$

The existential fragment

Full RML 00000

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Thank you

Models, Bisimulations, Refinements Models

We consider the standard Kripke models for modal logic K: $\mathcal{M} = (\mathbf{W}, R, V)$ - (non-empty) Set of worlds/states

The existential fragment

Full RML 00000

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Thank you

Models, Bisimulations, Refinements Models

We consider the standard Kripke models for modal logic K: $\mathcal{M} = (W, \mathbf{R}, V)$ - Binary relation on W

The existential fragment

Full RML 00000

イロト イロト イヨト イヨト ヨー クタウ

Thank you

Models, Bisimulations, Refinements Models

We consider the standard Kripke models for modal logic K: $\mathcal{M} = (W, R, \mathbf{V})$ - Function which assigns to each state in W a set of propositional variables.

The existential fragment

Full RML 00000 Thank you

Models, Bisimulations, Refinements Models

We consider the standard Kripke models for modal logic K: $\mathcal{M} = (W, R, V)$ For p a propositional variable, ϕ, ψ formulas and $s \in W$: $\mathcal{M}, s \models p$ iff $p \in V(s)$; $\mathcal{M}, s \models \neg \phi$ iff $\mathcal{M}, s \not\models \phi$; $\mathcal{M}, s \models \phi \land \psi$ iff $\mathcal{M}, s \models \phi$ and $\mathcal{M}, s \models \psi$; $\mathcal{M}, s \models \phi \lor \psi$ iff $\mathcal{M}, s \models \phi$ or $\mathcal{M}, s \models \psi$; $\mathcal{M}, s \models \Box \phi$ iff for every $(s, t) \in R, \mathcal{M}, t \models \phi$; $\mathcal{M}, s \models \Diamond \phi$ iff there is some $(s, t) \in R$ such that $\mathcal{M}, t \models \phi$.

▲ロト ▲園ト ▲ヨト ▲ヨト 三目 - のへで

The existential fragment

Full RML 00000 Thank you

Models, Bisimulations, Refinements Models

 $\mathcal{F} = (W, R)$ is called a frame.

The existential fragment 000000000

Full RML 00000

Thank you

Models, Bisimulations, Refinements

Bisimulations and Refinements

For two Kripke models $\mathcal{M} = (W, R, V)$ and $\mathcal{M}' = (W', R', V')$ we say that \mathcal{M}' is *bisimilar* to \mathcal{M} ($\mathcal{M} \approx \mathcal{M}'$) if there exists a relation $\mathcal{R} \subseteq W \times W'$ such that:

- For all $(s, s') \in \mathcal{R}$ we have V(s) = V'(s').
- For all $s \in W$, $s', t' \in W'$ such that $(s, s') \in \mathcal{R}$ and s'R't' there exists $t \in S$ such that $(t, t') \in \mathcal{R}$ and sRt.
- For all $s, t \in W$, $s' \in W'$ such that $(s, s') \in \mathcal{R}$ and sRt there exists $t' \in S$ such that $(t, t') \in \mathcal{R}$ and s'R't'.

We call \mathcal{R} a *bisimulation* from \mathcal{M} to \mathcal{M}' . $(\mathcal{M}, a) \approx (\mathcal{M}', b)$ if additionally $a\mathcal{R}b$.

The existential fragment 000000000

Full RML 00000

Thank you

Models, Bisimulations, Refinements

Bisimulations and Refinements

For two Kripke models $\mathcal{M} = (W, R, V)$ and $\mathcal{M}' = (W', R', V')$ we say that \mathcal{M}' is *bisimilar* to \mathcal{M} ($\mathcal{M} \approx \mathcal{M}'$) if there exists a relation $\mathcal{R} \subseteq W \times W'$ such that:

- For all $(s, s') \in \mathcal{R}$ we have V(s) = V'(s').
- For all $s \in W$, $s', t' \in W'$ such that $(s, s') \in \mathcal{R}$ and s'R't' there exists $t \in S$ such that $(t, t') \in \mathcal{R}$ and sRt.
- For all $s, t \in W$, $s' \in W'$ such that $(s, s') \in \mathcal{R}$ and sRt there exists $t' \in S$ such that $(t, t') \in \mathcal{R}$ and s'R't'.

We call \mathcal{R} a *bisimulation* from \mathcal{M} to \mathcal{M}' . $(\mathcal{M}, a) \approx (\mathcal{M}', b)$ if additionally $a\mathcal{R}b$.

The existential fragment

Full RML 00000

◆□▶ ◆母▶ ◆ヨ▶ ◆ヨ▶ ヨー つく⊙

Thank you

Models, Bisimulations, Refinements

Bisimulations and Refinements

For two Kripke models $\mathcal{M} = (W, R, V)$ and $\mathcal{M}' = (W', R', V')$ we say that \mathcal{M}' is a *refinement* of \mathcal{M} ($\mathcal{M} \succeq \mathcal{M}'$) if there exists a relation $\mathcal{R} \subseteq W \times W'$ such that:

- For all $(s, s') \in \mathcal{R}$ we have V(s) = V'(s').
- For all $s \in W$, $s', t' \in W'$ such that $(s, s') \in \mathcal{R}$ and s'R't' there exists $t \in S$ such that $(t, t') \in \mathcal{R}$ and sRt.

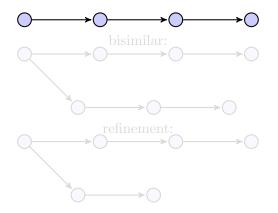
We call \mathcal{R} a *refinement* mapping from \mathcal{M} to \mathcal{M}' . $(\mathcal{M}, a) \succcurlyeq (\mathcal{M}', b)$ if additionally $a\mathcal{R}b$.

The existential fragment 000000000

Full RML 00000 Thank you

Models, Bisimulations, Refinements

Bisimulations and Refinements

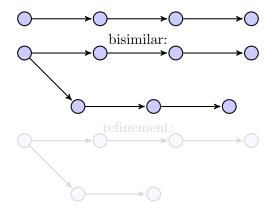


The existential fragment 000000000

Full RML 00000 Thank you

Models, Bisimulations, Refinements

Bisimulations and Refinements

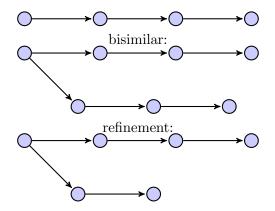


The existential fragment 000000000

Full RML 00000 Thank you

Models, Bisimulations, Refinements

Bisimulations and Refinements



Refinement Modal Logic ○○○○○○○○●○ The existential fragment

Full RML 00000 Thank you

Refinement Modal Logic

 $\mathcal{M}, s \models \exists_r \phi$ iff there is some (\mathcal{M}', s') , refinement of (M, s), such that $M', s' \models \phi$;

 $\mathcal{M}, s \models \forall_r \phi$ iff for all (\mathcal{M}', s') , refinements of $(M, s), M', s' \models \phi$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 • ��や

The existential fragment

Full RML 00000 Thank you

Refinement Modal Logic

 $\mathcal{M}, a \models \Box \Diamond \top \land \exists_r (\Diamond \Diamond \top \land \Diamond \Box \bot),$

where \mathcal{M} is:

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ● ●

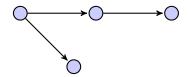
Refinement Modal Logic ○○○○○○○○● The existential fragment

Full RML 00000 Thank you

Refinement Modal Logic

 $\mathcal{M}, a \models \Box \Diamond \top \land \exists_r (\Diamond \Diamond \top \land \Diamond \Box \bot),$

where \mathcal{M} is:



The existential fragment

Full RML 00000

Thank you

Sac

You (we) are here:

Refinement Modal Logic Who? When? What? Why? Defining RML

The existential fragment A tableau procedure

Full RML Background Closing the Gaps

The existential fragment $\bullet 00000000$

Full RML 00000

Thank you

Tableau rules for RML^{\exists_r}

- Formulas prefixed by (μ, σ) , where $\mu, \sigma \in \mathbb{N}^*$.
- Intuitively, μ represents a model, σ a state.
- $(\mu.i, \sigma)$ is (represents) a refinement of (what is represented by) (μ, σ) .
- So is $(\mu.i.j, \sigma)$, because the refinement relation is *transitive*.
- If $(\mu.\nu, \sigma.i), (\mu.\nu, \sigma)$ have appeared, then in the model $\mu.\nu, \sigma R\sigma.i$.
- By the definition of refinement and induction on σ , in the model μ , $\sigma R \sigma. i$.
- In general, $\mu, \nu, \sigma \in \mathbb{N}^*$ and $i, j, m, n \in \mathbb{N}$.

The existential fragment $0 \bullet 0 0 0 0 0 0 0$

Full RML 00000 Thank you

Tableau rules for RML^{\exists_r}

The rules

$$\frac{(\mu, \sigma) \phi \land \psi}{(\mu, \sigma) \phi} \land \qquad \frac{(\mu, \sigma) \phi \lor \psi}{(\mu, \sigma) \phi} \lor \qquad \frac{(\mu, \nu, \sigma) l}{(\mu, \sigma) \psi} L$$

$$\frac{(\mu, \sigma) \phi}{(\mu, \sigma, i) \phi} \diamond \qquad \frac{(\mu, \sigma) \exists_r \phi}{(\mu, m, \sigma) \phi} \exists_r \qquad \frac{(\mu, \sigma) \Box \phi}{(\mu, \sigma, i) \phi} \Box$$
where $\sigma.i$ where $\mu.m$ where $\mu.m$ where has not $(\mu.\nu, \sigma.i)$ has appeared appeared appeared $\mu.\nu$

▲□▶ ▲舂▶ ▲壹▶ ▲壹▶ 三回 ● ◎ ●

The existential fragment 00000000

Full RML 00000

◆□▶ ◆母▶ ◆ヨ▶ ◆ヨ▶ ヨー つく⊙

Thank you

Tableau rules for RML^{\exists_r}

Accepting conditions

A tableau branch is propositionally closed when it includes some $(\mu, \sigma) p$ and $(\mu, \sigma) \neg p$.

The tableau procedure for ϕ starts from (1, 1) ϕ and accepts iff we can construct some branch closed under the tableau rules and not propositionally closed.

(

Full RML 00000 Thank you

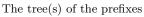
Tableau Example

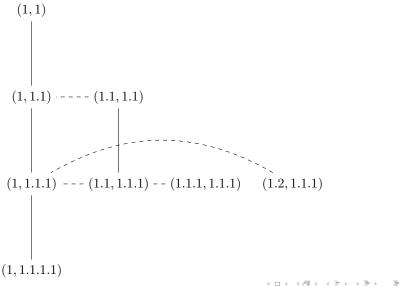
$$\frac{1,1) \Diamond (\Box((p \lor \Diamond p) \land \exists_{r}\Box \bot) \land \exists_{r} \Diamond (\Box \neg r \land \exists_{r} \neg p))}{(1,1.1) \Box((p \lor \Diamond p) \land \exists_{r}\Box \bot) \land \exists_{r} \Diamond (\Box \neg r \land \exists_{r} \neg p)} \land \\
\frac{(1,1.1) \Box((p \lor \Diamond p) \land \exists_{r}\Box \bot)}{(1,1.1) \Box_{r} \Diamond (\Box \neg r \land \exists_{r} \neg p)} \land \\
\frac{(1,1.1) \exists_{r} \Diamond (\Box \neg r \land \exists_{r} \neg p)}{(1.1,1.1) \Box \neg r \land \exists_{r} \neg p} & \exists_{r} \\
\frac{(1.1,1.1.1) \Box \neg r}{(1,1.1.1) \neg p} & \exists_{r} \\
\frac{(1.1,1.1.1) \neg p}{(1,1.1.1) \neg p} & \Box \land \\
\frac{(1,1.1.1) \neg p}{(1,1.1.1) \neg p} & \Box \land \\
\frac{(1,1.1.1) \Diamond p}{(1,1.1.1) \neg p} & \Diamond \land \\
\frac{(1,1.1.1) \exists_{r}\Box \bot}{(1,1.1.1) p} & \Diamond \land \\
\frac{(1,1.1.1) \neg p}{(1,1.1.1) \neg p} & \Diamond \land \\
\frac{(1,1.1.1) \Box \bot}{(1,1.1.1) \neg p} & \Diamond \land \\
\end{array}$$

Full RML 00000 Thank you

500

Tableau Example





The existential fragment 000000000

Full RML 00000 Thank you

Tableau

Correctness

Lemma

 ϕ is satisfiable if and only if starting from (1,1) ϕ we can make appropriate non-deterministic choices to end up with a complete accepting tableau branch.

The existential fragment 000000000

Full RML 00000

・ロト ・ 同ト ・ ヨト ・ ヨト

ъ

nac

Thank you

Tableau

Bounding the prefixes

Lemma

In any branch b such that $(\mu, \sigma) \ \psi \in b$, we have $|\mu| \leq d_{\exists}(\phi)$ and $|\sigma| \leq d_{\Diamond}(\phi)$.

This observation gives us the key to give an algorithm for RML^{\exists_r} -satisfiability.

 $d_{\exists}(\phi)$ is the nesting depth of \exists_r in ϕ and $d_{\Diamond}(\phi)$ the modal depth of ϕ .

The existential fragment 000000000

Full RML 00000

◆□▶ ◆母▶ ◆ヨ▶ ◆ヨ▶ ヨー つく⊙

Thank you

Tableau

Bounding the prefixes

Lemma

In any branch b such that $(\mu, \sigma) \ \psi \in b$, we have $|\mu| \leq d_{\exists}(\phi)$ and $|\sigma| \leq d_{\Diamond}(\phi)$.

This observation gives us the key to give an algorithm for $\mathrm{RML}^{\exists_r}\text{-}\mathrm{satisfiability}.$

 $d_{\exists}(\phi)$ is the nesting depth of \exists_r in ϕ and $d_{\Diamond}(\phi)$ the modal depth of ϕ .

The existential fragment 000000000

Full RML 00000 Thank you

An algorithm

That is, exploring a branch using only polynomial space

- A non-deterministic algorithm using polynomial space.
- Keep a set (P) of prefixed formulas in the branch currently under consideration and a subset of this which includes all such formulas that have already been used in a tableau rule (called M).
- For each (μ, σ) ψ ∈ P, where ψ a literal, a disjunction or conjunction, apply the appropriate rule(s) and mark the formula as used (put it in M).
- For each $\alpha = (\mu, \sigma) \Diamond \psi \in P$, $P_{\alpha} := \{(\lambda, \sigma.i) \ \chi \mid (\lambda, \sigma) \Box \chi \in P \text{ and } \lambda \sqsubseteq \mu\} \cup \{(\mu, \sigma.i) \ \psi\}$ for some new *i* and explore P_{α} .
- For each $\alpha = (\mu, \sigma) \exists_r \psi \in P$, $P_{\alpha} := \{(\lambda, \sigma) \ \chi \in P \mid \lambda \sqsubseteq \mu\} \cup \{(\mu, i, \sigma) \ \psi\}$ for some new *i* and explore P_{α} . Keep any $(1, \sigma) \ l$ formulas in *P*.

The existential fragment 000000000

Full RML 00000 Thank you

An algorithm

That is, exploring a branch using only polynomial space

- A non-deterministic algorithm using polynomial space.
- Keep a set (P) of prefixed formulas in the branch currently under consideration and a subset of this which includes all such formulas that have already been used in a tableau rule (called M).
- For each (μ, σ) ψ ∈ P, where ψ a literal, a disjunction or conjunction, apply the appropriate rule(s) and mark the formula as used (put it in M).
- For each $\alpha = (\mu, \sigma) \Diamond \psi \in P$, $P_{\alpha} := \{(\lambda, \sigma.i) \ \chi \mid (\lambda, \sigma) \ \Box \chi \in P \text{ and } \lambda \sqsubseteq \mu\} \cup \{(\mu, \sigma.i) \ \psi\}$ for some new *i* and explore P_{α} .
- For each $\alpha = (\mu, \sigma) \exists_r \psi \in P$, $P_{\alpha} := \{(\lambda, \sigma) \ \chi \in P \mid \lambda \sqsubseteq \mu\} \cup \{(\mu, i, \sigma) \ \psi\}$ for some new *i* and explore P_{α} . Keep any $(1, \sigma) \ l$ formulas in *P*.

The existential fragment 000000000

Full RML 00000 Thank you

An algorithm

That is, exploring a branch using only polynomial space

- A non-deterministic algorithm using polynomial space.
- Keep a set (P) of prefixed formulas in the branch currently under consideration and a subset of this which includes all such formulas that have already been used in a tableau rule (called M).
- For each (μ, σ) ψ ∈ P, where ψ a literal, a disjunction or conjunction, apply the appropriate rule(s) and mark the formula as used (put it in M).
- For each $\alpha = (\mu, \sigma) \Diamond \psi \in P$, $P_{\alpha} := \{(\lambda, \sigma.i) \ \chi \mid (\lambda, \sigma) \ \Box \chi \in P \text{ and } \lambda \sqsubseteq \mu\} \cup \{(\mu, \sigma.i) \ \psi\}$ for some new *i* and explore P_{α} .
- For each $\alpha = (\mu, \sigma) \exists_r \psi \in P$, $P_{\alpha} := \{(\lambda, \sigma) \ \chi \in P \mid \lambda \sqsubseteq \mu\} \cup \{(\mu.i, \sigma) \ \psi\}$ for some new *i* and explore P_{α} . Keep any $(1, \sigma) l$ formulas in *P*.

The existential fragment 00000000

Full RML 00000 Thank you

The algorithm is correct

- The algorithm (non-deterministically) explores a tableau branch.
- The union of all the *P*'s that come up is a branch closed under the rules.
- All literals are gathered under prefix $(1, \sigma)$.
- So...

Theorem

The satisfiability problem for RML^{\exists_r} is in PSPACE.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ● ●

The existential fragment 00000000

Full RML 00000

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Thank you

The algorithm is correct

- The algorithm (non-deterministically) explores a tableau branch.
- The union of all the *P*'s that come up is a branch closed under the rules.
- All literals are gathered under prefix $(1, \sigma)$.
- So...

Theorem

The satisfiability problem for RML^{\exists_r} is in PSPACE.

The existential fragment

Full RML

(日) (四) (日) (日) (日)

Sac

You (we) are here:

Refinement Modal Logic Who? When? What? Why? Defining RML

The existential fragment A tableau procedure

Full RML Background Closing the Gaps

The existential fragment 000000000

Full RML ●0000

The Algorithm by Bozzeli, van Ditmarsch and Pinchinat (2012) Alternation depth and fragments

- The weak refinement alternation depth of ϕ ($\mathcal{Y}_w(\phi)$) is the quantifier alternation depth of $\exists_r \phi$.
- $\mathcal{Y}_w(\exists_r \phi) = \mathcal{Y}_w(\phi) \text{ and } \mathcal{Y}_w(\forall_r \phi) = \mathcal{Y}_w(\neg \forall_r \phi) + 1.$
- RML^k consists of all RML formulas of weak refinement alternation depth at most k.
- $\operatorname{RML}^{\exists_r} = \operatorname{RML}^1$

The existential fragment 000000000

Full RML 0●000

- ロト - 4 目 ト - 4 目 ト

Thank you

200

3

The Algorithm by Bozzeli, van Ditmarsch and Pinchinat (2012)

The picture

K	PSPACE-complete
$\mathrm{RML}^{\exists} = \mathrm{RML}^1$	\in NEXPTIME
	PSPACE-hard
RML^2	$\in \Sigma_2^{EXP}$
	NEXPTIME-hard
$\operatorname{RML}^{k+1} (k \le 1)$	$ \begin{array}{c} \in \Sigma_{k+1}^{EXP} \\ \Sigma_{k}^{EXP} \text{-hard} \end{array} $
RML	$AEXP_{pol}$ -complete

The complexity of satisfiability for fragments of RML

The existential fragment 000000000

Full RML 00€00

The Algorithm by Bozzeli, van Ditmarsch and Pinchinat (2012)

The algorithm

The algorithm first non-deterministically guesses a tree model of at most an exponential number of states¹ for ϕ and then runs the following to check that ϕ is satisfied:

- Given a tree model and ϕ , non-deterministically spread its subformulas tableau-wise on the tree (do not analyse $\exists_r \psi$ and $\forall_r \psi$).
- Wherever you see an $\exists_r \psi$, non-deterministically guess a tree model of at most an exponential number of states and which is a refinement of the original. Go on to check that ψ is satisfied there.
- Wherever you see a $\forall_r \psi$, use an oracle for $\neg \forall_r \psi = \exists_r \neg \psi$ and the subtree with root the current state. Notice that the weak alternation depth of $\neg \forall_r \psi$ is one less than that of $\forall_r \psi$.

¹Yes, we can do that.

The existential fragment

Full RML ○○○●○

-

nac

Thank you

Our Variation

• We do the same thing.

- Except, when given an RML^{∃r} formula, we do not have to guess a model. We can *deterministically construct* it (all of them, actually) using polynomial space, so exponential time.
- This saves us a step in the exponential hierarchy and closes the complexity gaps.

The existential fragment

Full RML ○○○●○

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Thank you

Our Variation

- We do the same thing.
- Except, when given an RML^{∃r} formula, we do not have to guess a model. We can *deterministically construct* it (all of them, actually) using polynomial space, so exponential time.
- This saves us a step in the exponential hierarchy and closes the complexity gaps.

The existential fragment

Full RML ○○○○●

Thank you

900

The resulting picture

K	PSPACE-complete
$\mathrm{RML}^{\exists} = \mathrm{RML}^{1}$	PSPACE-complete
RML^2	NEXPTIME-complete
$\operatorname{RML}^{k+1} (k \le 1)$	Σ_k^{EXP} -complete
RML	$AEXP_{pol}$ -complete

The complexity of satisfiability for fragments of RML

The existential fragment 000000000 Full RML 00000 Thank you

Thank you.

Questions?

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ 臣 - のへで