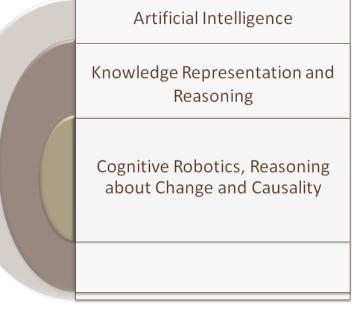
Calculi for Reasoning About Action and Knowledge

Dimitris Plexousakis, Theodore Patkos {dp, patkos}@ics.forth.gr

Department of Computer Science, University of Crete, Greece

Institute of Computer Science – Foundation for Research and Technology - Hellas (FO.R.T.H.)


9th Panhellenic Logic Symposium, July 15-18, 2013

Outline

- Reasoning about action and change
- Fundamental issues
- Active Research Domains
- Application Domains
- Epilogue

Action Theories – Introduction

- Action theories are logical languages devised to express the *dynamics* of the world
- They aim at "formally characterizing the relationship between the knowledge, the perception and the action of autonomous agents" (Levesque, Reiter [17])
- Action theories model (explicitly or implicitly) the general notions of *time, change* and *causality*.
- During the 1990's the attention in action theories revolved around *cognitive robotics*.

Action Theories – Introduction

- Action Theories are formal tools that aim to automate the process of commonsense reasoning in dynamically-changing worlds, in order to
 - predict the outcome of a given action sequence
 - explain observations
 - find a situation in which certain goal conditions are met.
- Action theories have much in common with general purpose logics
 - In the general case they are based on *predicate calculus*.
- State transition and plan generation is done by *logical deduction*, rather than by state-space or plan-space search.

Action Theories – Commonsense phenomena

• Related issues

- Representation
- Effects of Events and Causal relations
- Indirect Effects of Events (*Ramification* problem)
- Context-dependent Effects
- Non-deterministic Effects
- Concurrent Events
- Preconditions
- Inertia

(Frame problem)

- Actions with duration
- Physical and Triggered events
- Delayed Effects and Continuous Change
- Default Reasoning (*Qualification* problem)

•

Outline

- Reasoning about action and change
- Fundamental issues
 - Prominent Calculi
- Active Research Domains
- Application Domains
- Epilogue

Fundamental Issues – The Frame Problem

•	Example (definitions of sorts are missing):	
	$Happens(?e, ?t) \land Initiates(?e, ?f, ?t) \Rightarrow HoldsAt(?f,?t+1)$	(4.0)
	Initiates(TurnOn(?x), On(?x), ?t)	(4.1)
	¬HoldsAt(On(Light1),0)	(4.2)
	¬HoldsAt(On(Light2),0)	(4.3)
	Happens(TurnOn(Light2),0)	(4.4)

• Ok about *Light2*, but what can we say about *Light1*??

Fundamental Issues – The Frame Problem

- The *frame problem* refers to the task of
 - expressing the effects of a world changing action
 - without having to explicitly specify all the aspects that are not affected by this action.
- Different solutions have been proposed
- A popular one is the axiomatization of the commonsense *Law of Inertia*:
 - *"things tend to persist unless affected by some event".*

Fundamental Issues – Ramification Problem

- An action can cause a series of direct effects, but can also have dramatic *side-effects*.
- The problem of representing and reasoning about the indirect effects of events is known as the *ramification problem*.
- A multitude of solutions have been proposed, but still this is an open and very challenging issue.

Fundamental Issues – Qualification Problem

- Whenever we intend to execute some plan we know that many *things may go wrong*, i.e.,
 - in order to drive to the university the car must have gas,
 - its engine must not be broken,
 - its tailpipe must not be blocked by a potato or other object,
 - the roads must not be blocked

- If we *lack evidence to the contrary*, commonsense instructs to proceed assuming that none of the potential problematic cases holds.
- It is impossible to list all contingencies! This is the so-called *qualification problem*:
 - *"an agent needs not consider unexpected qualifications for an action, unless there is evidence to justify their existence".*

Fundamental Issues – Challenging research topics

- Incorporating a *uniform solution* for all three problems is a challenging task
- For instance, while many existing approaches to the frame problem are monotonic, the qualification problem inherently requires a non-monotonic solution
- Additionally, ramifications in real world are *too complex* (delayed effects, unknown parameters) and require a combination of different reasoning types, e.g., temporal reasoning.

Outline

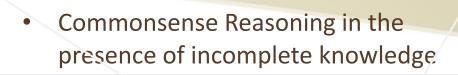
- Reasoning about action and change
- Fundamental issues
 - Prominent Calculi
- Active Research Domains
- Application Domains
- Epilogue

Prominent Calculi – Languages and implementations

- Situation Calculus [1,2,3]
 - First-order language with some second-order features
 - Defines disjoint *sorts* for actions, fluents, situations (history of actions)
 - *Idea*: Reachable states are definable in terms of the actions required to reach them
 - *Branching* time structure (all actions are hypothetical)
 - Solutions to most problems in the area (not unified solutions)
 - High-level Robot Programming Languages: Golog, IndiGolog etc
- Event Calculus
- Action Languages A, C, C+, K [6,7]

Prominent Calculi – Languages and implementations

- Situation Calculus [1,2,3]
- Event Calculus [4,5]
 - First-order *non-monotonic* language, augmented with an explicit representation of *time*
 - *Idea*: Representation of causal and narrative information
 - *Linear* time structure, discrete or continuous time (actual actions)
 - Supports the modeling of a wide variety of phenomena for commonsense reasoning
 - SAT- and ASP-based solvers
- Action Languages A, C, C+, K [6,7]


Prominent Calculi – Languages and implementations

- Situation Calculus [1,2,3]
- Event Calculus [4,5]
- Action Languages A, C, C+, K [6,7]
 - Define independent *semantics* to distinguish between a claim that a formula is true and the stronger claim that there is a cause for it to be true
 - Concise syntax, parts of natural language
 - Developed originally as a means to *translate* the different action languages in a common formalism for correctness assessment; but significantly extended since.
 - Close relation with *Answer Set Programming*: Efficient ASP solvers, Causal Calculator (CCALC) etc

Outline

- Reasoning about action and change
- Fundamental issues
- Active Research Domains
 - Epistemic Reasoning
 - Reasoning with multiple agents
- Application Domains
- Epilogue

The AI Landscape – Dynamic Worlds

umanoid Robots

ation for the Adv ficial Intelligence

the AI timeline and more at w.aaai.org/AILandscape

ndscap

tous Computing

Recommender Systems & Question Answering

Epistemic Action Theories

• Epistemic (modal) logic: An agent is said to know a fact if this is true in all possible worlds.

$$t=0$$

$$s_{1}^{0}:<\neg f, f'>$$

$$s_{2}^{0}:<\neg f, \neg f'>$$

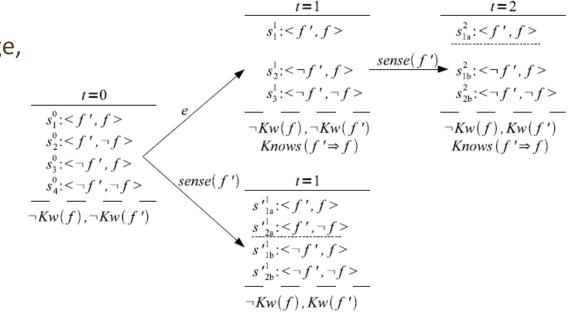
 $Knows(\neg f), \neg Kw(f')$

Artificial Intelligence

Knowledge Representation and Reasoning

Cognitive Robotics, Reasoning about Change and Causality

Epistemic Action Theories

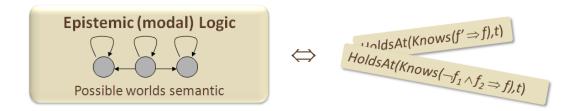

Modal Logics

Epistemic Action Theories – Relevant Issues

- How to reason about actions in partially observable worlds
 - What do we know about the (direct/indirect) effects of an action, when some preconditions are unknown?
 - When to perform *sensing* and how knowledge should be updated
 - affects our previous knowledge about preconditions
 - affects our assumptions about exogenous actions
 - Build *epistemically feasible plans* (the goal is always *known* to be achievable)
 - What do we know about the effects of *natural/triggered events* when it is not certain whether the state of the world justifies their occurrence?
 - Etc...

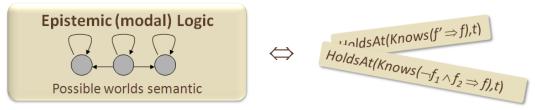
Epistemic Action Theories – Possible worlds semantics

- Epistemic action theories [8] are very expressive and have been extended in a multitude of way:
 - concurrent actions,
 - belief,
 - future/past knowledge,
 - potentially triggered events,
 - etc...


But they are computationally intensive.

Epistemic Action Theories – Alternative Approaches

- Defining knowledge using the accessibility relation introduces serious *complexity issues*
- ... and there is always the logical omniscience problem.
- Alternate approaches, aiming at tractability, either
 - *restrict expressiveness* (do not support knowledge about disjunctions, restrict the domain) or
 - *sacrifice completeness* with respect to possible worlds semantics.


Epistemic Action Theories – Alternative Approaches & DECKT

- At FORTH we have been working on the Discrete time Event Calculus Knowledge Theory (DECKT) [9]
- DECKT uses a *deduction-oriented* rather than a possible-worlds based model of knowledge.
- It adopts a meta-approach to transform a non-epistemic domain description into an epistemic axiomatization

Epistemic Action Theories – Alternative Approaches & DECKT

- At the core is an established *translation* of the standard possible worlds approach of epistemic reasoning into a form of epistemic implication rules
- When appropriately restricted, it is shown to be sound and complete with respect to possible worlds-based theories
- And more appropriate for *practical implementations* in terms of computational complexity and efficiency in implementing the cognitive skills for agents.

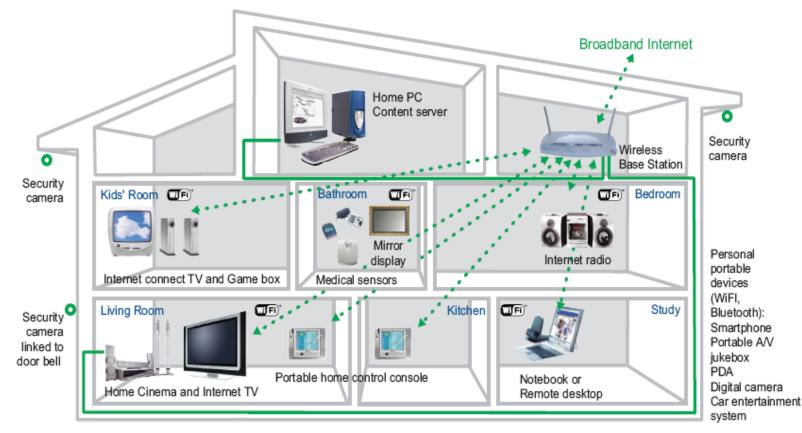
Outline

- Reasoning about action and change
- Fundamental issues
- Active Research Domains
 - Epistemic Reasoning
 - *Reasoning with multiple agents*
- Application Domains
- Epilogue

Multi-Agent Reasoning – Active Research Domains

- "After agent A distracts agent B and takes her key, B will not know that A has the key, and will believe that A does not have it; A knows that B does not know that A has the key". [10]
- Observability of actions
 - Some actions are *broadcast*; others may be *private*; their effects may be *partially observable* etc
- Nested epistemic notions
 - Reasoning about the epistemic implications of actions on *the mental* state of other agents is instrumental for decision making

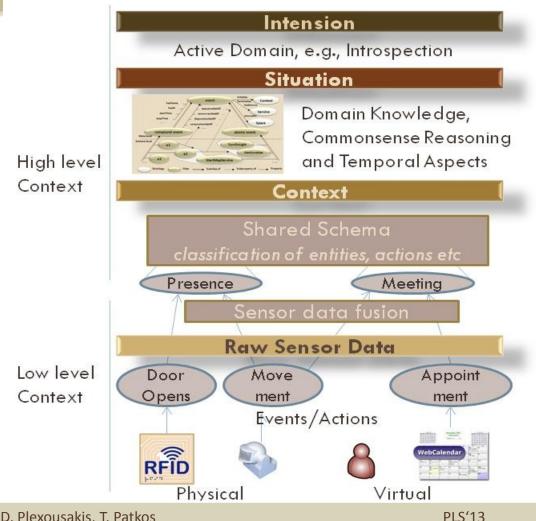
Multi-Agent Reasoning – Active Research Domains


- Group-level epistemic modalities
 - Group knowledge, common knowledge, common goals
- Prospective/Retrospective/Counterfactual Reasoning
 - deliberating about the ramifications of a potential action *in the future* or about how current observations can be explained *in the past*
 - resembles the type of commonsense reasoning humans extensively perform to decide their actions.

Outline

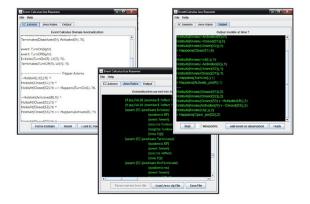
- Reasoning about action and change
- Fundamental issues
- Active Research Domains
- Application Domains
 - Ambient Intelligence
 - Cognitive Robotics
 - Others
- Epilogue

Ambient Intelligence


- Sensor-rich collaborative environments
- Temporal constraints are ubiquitous

Ambient Intelligence – and Al

- AmI follows on from work in *Artificial Intelligence*.
- Al has a decisive role to play:
 - representation of contextual knowledge,
 - context inference,
 - collaboration of devices to achieve common objectives,
 - planning in dynamic domains,
 - commonsense reasoning


Ambient Intelligence – Information flow within Aml

- Moving from low-level data to high-level knowledge expressive languages and powerful reasoning are needed [11].
- Capturing the causal and temporal relations of events, especially under partial observability, is essensial for activity/situation/intension recognition.
- Action theories are applied in the top layers

Ambient Intelligence – Related Research at FORTH

- At FORTH we implemented a *Semantic Web-based framework* for AmI domains that enables the gathering and dissemination of contextual knowledge..
- ..as well as the design of a *reasoner* [12] for causal, epistemic and temporal reasoning.
- The reasoner translates Event Calculus axiomatizations into production rules for execution of runtime reasoning tasks.

Ambient Intelligence – Event Calculus Rule-based Reasoner

Event Calculus

- Reasoning about action and time
- Solution to problems (frame, ramification, qualification)
- Commonsense phenomena

DECKT

- Epistemic reasoning
- Hidden causal dependencies, rather than possible worlds structures
- Sensing, potential actions etc

Rule-based forward-chaining production system

- NaF, semi-destructive update
- Salience values, subsumption...
- Online/offline reasoning
- Multiple model generation
- GUI/Java interface

Application Domain

- Ambient Intelligence, AAL
- Benchmark problems (e.g., Shanahan's circuit)

foundations

Theoretica

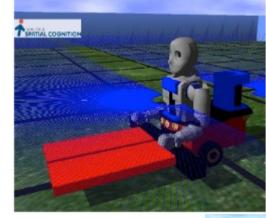
Implementation

Contribution

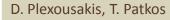
PLS'13

D. Plexousakis, T. Patkos

Outline


- Reasoning about action and change
- Fundamental issues
- Active Research Domains
- Application Domains
 - Ambient Intelligence
 - Cognitive Robotics
 - Others
- Epilogue




- Attention is focusing on bringing closer *traditional* with *cognitive robotics*.
- Bilateral interaction between causal reasoning and motion planning
- Embedding of *commonsense knowledge*

Cognitive Robotics Today

- Housekeeping robots, simulation platforms and others
- Action theories are now translated and implemented in the new logic-based problem solving paradigm of Answer Set Programming (ASP) [18]
- ASP solvers outperform SATor Prolog-based reasoners

Other Application Domains

- Complex Event Detection
 - Emergency rescue operations of the Fire Department of Dortmund [13]
 - City Transportation Management [14]
 - Recognition of human activities from video streams [15]
- Web Service Composition
- Commitment Tracking
- and others...

Outline

- Reasoning about action and change
- Fundamental issues
- Active Research Domains
- Application Domains
- Epilogue

- Action Theories constitute an active research domain with
 - open theoretical research questions and
 - clear applied orientation
 - (sometimes even a bit beyond:

Leora Morgenstern, "A Formal Theory of Time Travel" [16])

- Research in Action Theories both feeds and takes advantage of the progress in logic formalisms
 - Non-monotonic logics: default logic, circumscription, answer set programming

The end

Thank you!

Indicative References

• [1] J. McCarthy. **Situations, actions and causal laws**. In Stanford University. Reprinted in Semantic Information Processing (M. Minsky ed.), MIT Press, Cambridge, Mass., 1968.

[2] H. Levesque, F. Pirri, and R. Reiter. **Foundations for the situation calculus**. In Linkoping Electronic Articles in Computer and Information Science, volume 3, 1998.

[3] R. Reiter. Knowledge in Action: Logical Foundations for Specifying and Implementing Dynamical Systems. MIT Press, 2001.

[4] R Kowalski and M Sergot. **A Logic-based Calculus of Events**. New Generation Computing, 4(1):67-95, 1986.

[5] Rob Miller and Murray Shanahan. **Some alternative formulations of the event calculus**. In Computational Logic: Logic Programming and Beyond, Essays in Honour of Robert A. Kowalski, Part II, pages 452-490, London, UK, 2002. Springer-Verlag.

[6] V. Lifschitz M. Gelfond. **Iterated belief change in the situation calculus**. Journal of Logic Programming, 17:301-321, 1993.

[7] Esra Erdem and Volkan Patoglu. **Correct reasoning**. chapter Applications of action languages in cognitive robotics, pages 229-246. 2012.

Indicative References

• [8] R. C. Moore. **A formal theory of knowledge and action**. In Formal Theories of the Commonsense World, pages 319-358. J. Hobbs, R. Moore (Eds.), 1985.

[9] Theodore Patkos and Dimitris Plexousakis. **Reasoning with Knowledge, Action and Time in Dynamic and Uncertain Domains**. In Proceedings of the 21st international joint conference on Artificial intelligence, IJCAI'09, pages 885-890, 2009.

[10] Tran Cao Son Enrico Pontelli Chitta Baral, Gregory Gelfond. **An action language for reasoning about beliefs in multi-agent domains**. In 14th International Workshop on Non-Monotonic Reasoning, 2012.

[11] Daniele Riboni, Linda Pareschi, Laura Radaelli, and Claudio Bettini. Is ontologybased activity recognition really effective? In 9th Annual IEEE International Conference on Pervasive Computing and Communications, PerCom 2011, Workshop Proceedings, pages 427–431, 2011.

[12] Theodore Patkos, Abdelghani Chibani, Dimitris Plexousakis, and Yacine Amirat. **A production rule-based framework for causal and epistemic reasoning**. In Rules on the Web: Research and Applications, volume 7438 of Lecture Notes in Computer Science, pages 120–135. 2012.

Indicative References

• [13] Alexander Artikis, Robin Marterer, Jens Pottebaum, and Georgios Paliouras. **Event** processing for intelligent resource management. In ECAI, pages 943–948, 2012.

[14] Alexander Artikis, Marek Sergot, and Georgios Paliouras. **Run-time composite event recognition**. In Proceedings of the 6th ACM International Conference on Distributed Event-Based Systems, DEBS '12, pages 69–80, 2012.

[15] Alexander Artikis, Marek Sergot, and Georgios Paliouras. **A logic programming approach to activity recognition**. In Proceedings of the 2nd ACM international workshop on Events in multimedia, EiMM '10, pages 3–8, 2010.

[16] Leora Morgenstern. **A formal theory of time travel**. In 11th International Symposium on Logical Formalizations of Commonsense Reasoning (Commonsense'13), 2013.

[17] Hector Levesque and Ray Reiter. **High-level Robotic Control: Beyond Planning**. A Position Paper. In AIII 1998 Spring Symposium: Integrating Robotics Research: Taking the Next Big Leap, 1998.

[18] Thomas Eiter, Giovambattista Ianni, and Thomas Krennwallner. **Answer Set Programming: A Primer**, in **Reasoning Web**, pages 40–110. 2009.