
Incomplete Information in RDF using Constraints

Manolis Koubarakis
Joint work with Charalampos Nikolaou

Department of Informatics and Telecommunications
National and Kapodistrian University of Athens

9th Panhellenic Logic Symposium 2013 (PLS9)
July 18, 2013



Outline

Motivation

Previous work

The RDFi framework

SPARQL query evaluation over RDFi databases

Representation systems for RDFi and SPARQL

An algorithm for certain answer computation

Preliminary complexity results

Applications

Conclusions and future work

M. Koubarakis – Incomplete Information in RDF using Constraints 2/59



Motivation

M. Koubarakis – Incomplete Information in RDF using Constraints 3/59



Motivation

I Incomplete information is an important issue in many research
areas: relational databases, knowledge representation and the
semantic web.

I Incomplete information arises in many practical settings (e.g.,
sensor data). RDF is often used to represent such data.

I Even if initial information is complete, incomplete information
arises later on (e.g., relational view updates, data integration,
data exchange).

I Although there is much work recently on incomplete
information in XML, not much has been done for incomplete
information in RDF.
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Previous work
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Previous work

Relational

I Relations extended to tables with various models of
incompleteness [Imielinski/Lipski ’84]

I Complexity results for the associated decision problems
[Abiteboul/Kanellakis/Grahne ’91]

I Dependencies and updates [Grahne ’91]

XML

I Dynamic enrichment of incomplete information
[Abiteboul/Segoufin/Vianu ’01,’06]

I General models of incompleteness, query answering, and
computational complexity [Barceló/Libkin/Poggi/Cirangelo
’09,’10]
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Previous work (cont’d)

RDF

I Blank nodes as existential variables in the RDF standard

I SPARQL query evaluation under certain answer semantics
(Open World Assumption) [Arenas/Pérez ’11]

I Anonymous timestamps in general temporal RDF graphs
[Gutierrez/Hurtado/Vaisman ’05]

I General temporal RDF graphs with temporal constraints
[Hurtado/Vaisman ’06]

RDFi: It captures incomplete information for property values
using constraints. It is for RDF what the c-tables model is for the

relational model.
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The RDFi framework
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RDFi by example

Example

hotspot1 type Hotspot .

fire1 type Fire .

hotspot1 correspondsTo fire1 .

fire1 occuredIn _R1 .

P

x

y

6

8

23

19

R1 NTPP "x ≥ 6 ∧ x ≤ 23 ∧ y ≥ 8 ∧ y ≤ 19"
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RDFi in a nutshell

I Extension of RDF for capturing incomplete information for
property values that exist but are unknown or partially known

I Partial knowledge captured by constraints using an
appropriate constraint language L

Syntax

RDF graphs extended to RDFi databases: pair (G , φ)

I G : RDF graph with a new kind of literals, called e-literals

I φ: quantifier-free formula of L

Semantics

I Possible world semantics as in [Imielinski/Lipski ’84] and
[Grahne ’91]
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Constraint languages L

Properties of L
I Many-sorted first-order language

I Interpreted over a fixed (intended) structure ML
I EQ: distinguished equality predicate

I L-constraints: quantifier-free formulae of L
I Weakly closed under negation: the negation of every atomic
L-constraint is equivalent to a disjunction of L-constraints
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Constraint languages L (cont’d)
Examples

ECL

I Equality constraints
interpreted over an infinite
domain: x EQ y , x EQ c

I Blank nodes as existential
variables

diPCL/dePCL

I Difference constraints of the
form x − y ≤ c interpreted over
the integers or rationals

I Incomplete temporal
information [Koubarakis ’94]

TCL

I Topological constraints of
non-empty, regular closed
subsets of topological space

I Six binary predicates:
DC,EC,PO,EQ,TPP,NTPP
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Constraint languages L (cont’d)
Examples

ECL

I Equality constraints
interpreted over an infinite
domain: x EQ y , x EQ c

I Blank nodes as existential
variables

diPCL/dePCL

I Difference constraints of the
form x − y ≤ c interpreted over
the integers or rationals

I Incomplete temporal
information [Koubarakis ’94]

TCL

I Topological constraints of
non-empty, regular closed
subsets of topological space

I Six binary predicates:
DC,EC,PO,EQ,TPP,NTPP

PCL

I TCL plus constant symbols
representing polygons in Q2

I e.g.,
r NTPP "x − y ≥ 0∧ x ≤ 1∧ y ≥ 0"
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RDFi: Vocabulary

RDF

RDFi L

I (IRIs)

I

B (blank nodes)

B

L (literals)

L
C (literals) constants
U (e-literals) variables

M (datatype map)

M
A (datatypes) set of sorts

ML interprets the constants of L in agreement with function
L2V of M
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RDFi: Syntax

subject object
predicate

I

I B I B L C U

θ

I : IRIs
B : blank nodes
L : literals
C : constants of L
U: e-literals

Definition

I (s, p, o) ∈ (I ∪B)∪ I ∪ (I ∪B ∪ L∪C ∪U) is called an e-triple

I If t is an e-triple and θ a conjunction of L-constraints, then
the pair (t, θ) is called a conditional triple

I A set of conditional triples is called a conditional graph
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RDFi: Syntax (cont’d)

Definition
An RDFi database D is a pair D = (G , φ) where G is a conditional
graph and φ a Boolean combination of L-constraints (global
constraint)

Example

hotspot1 type Hotspot .

fire1 type Fire .

hotspot1 correspondsTo fire1 .

fire1 occuredIn _R1 .

R1 NTPP "x ≥ 6 ∧ x ≤ 23 ∧ y ≥ 8 ∧ y ≤ 19"

P

x

y

6

8

23

19
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RDFi: Semantics

RDFi database

D





G1,
G2,
...





Rep

RDF graphs

Definition
A valuation v is a function from U to C assigning to each e-literal
from U a constant from C

Definition
Let G be a conditional graph and v a valuation. Then v(G )
denotes the RDF graph

{v(t) | (t, θ) ∈ G and ML |= v(θ)}

M. Koubarakis – Incomplete Information in RDF using Constraints 16/59



RDFi: Semantics

RDFi database

D





G1,
G2,
...





Rep

RDF graphs

Definition
A valuation v is a function from U to C assigning to each e-literal
from U a constant from C

Definition
Let G be a conditional graph and v a valuation. Then v(G )
denotes the RDF graph

{v(t) | (t, θ) ∈ G and ML |= v(θ)}

M. Koubarakis – Incomplete Information in RDF using Constraints 16/59



RDFi: Semantics (cont’d)

From RDFi databases to sets of RDF graphs

An RDFi database D = (G , φ) corresponds to the following set of
RDF graphs:

Rep(D) =
{

H | there exists valuation v and RDF graph H

such that ML |= v(φ) and H ⊇ v(G )
}

I Relation ⊇ captures the OWA semantics

I An RDFi database corresponds to an infinite number of RDF
graphs
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Question

- How can we evaluate a query q over an RDFi database D
(compute JqKD)?

Semantic definition

JqKRep(D) = {JqKG | G ∈ Rep(D)}

In practice?
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SPARQL query evaluation over
RDFi databases

M. Koubarakis – Incomplete Information in RDF using Constraints 19/59



Query evaluation highlights

I Start with SPARQL algebra of [Pérez/Arenas/Gutierrez ’06]
with set semantics

I Define SPARQL query evaluation for RDFi databases
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From mappings to e-mappings...

{?F→ fire1, ?S→ ”x ≥ 1 ∧ x ≤ 2 ∧ y ≥ 1 ∧ y ≤ 2”}

{?F→ fire1, ?S→ R1}
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... to conditional mappings

(

{?F→ fire1, ?S→”x ≥ 1 ∧ x ≤ 2 ∧ y ≥ 1 ∧ y ≤ 2”}

,
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... to conditional mappings

(
{?F→ fire1, ?S→”x ≥ 1 ∧ x ≤ 2 ∧ y ≥ 1 ∧ y ≤ 2”}, true

)

M. Koubarakis – Incomplete Information in RDF using Constraints 22/59



... to conditional mappings

(
{?F→ fire1, ?S→ R1}, R1 EQ ”x ≥ 1∧x ≤ 2∧y ≥ 1∧y ≤ 2”

)
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From compatible mappings to possibly compatible
mappings
Join of conditional mappings

(
{?F → fire1, ?S → R1}, R1 EQ ”x ≥ 1 ∧ x ≤ 2 ∧ y ≥ 1 ∧ y ≤ 2”

)

on

(
{ ?S → R2}, true

)

=
(
{?F → fire1, ?S → R1}, true ∧ R1 EQ R2 ∧

R1 EQ ”x ≥ 1 ∧ x ≤ 2 ∧ y ≥ 1 ∧ y ≤ 2”
)
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Operations on conditional mappings

Let Ω1 and Ω2 be sets of conditional mappings. We can define the
operation of:

I Join (Ω1 on Ω2)

I Union (Ω1 ∪ Ω2)

I Difference (Ω1 \ Ω2)

I Left-outer join (Ω11Ω2)
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Graph pattern evaluation

If D is an RDFi database and P a graph pattern, the evaluation of
P over D is defined recursively:

base case:
P is the triple pattern t

recursion:
P is (P1 AND P2) → JP1KD on JP2KD
P is (P1 UNION P2) → JP1KD ∪ JP2KD
P is (P1 OPT P2) → JP1KD 1 JP2KD
P is (P1 FILTER R)

where R is a conjunction of L-constraints
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Triple pattern evaluation (case 1)

Example

Database D

fire1 occuredIn _R1 .

R1 NTPP "x ≥ 6 ∧ x ≤ 23 ∧ y ≥ 8 ∧ y ≤ 19"

Query q

?F occuredIn ?R

Answer (set of conditional mappings)

JqKD =
{(
{?F→ fire1, ?R→ R1}, true

)}
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Triple pattern evaluation (case 2)

Example

Database D

fire1 occuredIn _R1 .

R1 NTPP "x ≥ 6 ∧ x ≤ 23 ∧ y ≥ 8 ∧ y ≤ 19"

Query q

?F occuredIn

"x ≥ 1 ∧ x ≤ 2 ∧ y ≥ 1 ∧ y ≤ 2"

Answer (set of conditional mappings)

JqKD =
{(
{?F→ fire1}, R1 EQ "x ≥ 1∧x ≤ 2∧y ≥ 1∧y ≤ 2"

)}
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Evaluation of FILTER graph patterns

Example

Database D

fire1 occuredIn _R1 .

R1 NTPP "x ≥ 6 ∧ x ≤ 23 ∧ y ≥ 8 ∧ y ≤ 19"

Query q

?F occuredIn ?R .

FILTER (?R NTPP

"x ≥ 1 ∧ x ≤ 2 ∧ y ≥ 1 ∧ y ≤ 2")

Answer

JqKD =
{(
{?F→ fire1, ?R→ R1},

R1 NTPP "x ≥ 1 ∧ x ≤ 2 ∧ y ≥ 1 ∧ y ≤ 2"
)}
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SELECT queries

Example

Database D

fire1 occuredIn _R1 .

R1 NTPP "x ≥ 6 ∧ x ≤ 23 ∧ y ≥ 8 ∧ y ≤ 19"

Query q

SELECT ?F

WHERE {

?F occuredIn ?R .

FILTER (?R NTPP

"x ≥ 1 ∧ x ≤ 2 ∧ y ≥ 1 ∧ y ≤ 2")}

Answer (set of conditional mappings)

JqKD =
{(
{?F→ fire1},

R1 NTPP "x ≥ 1 ∧ x ≤ 2 ∧ y ≥ 1 ∧ y ≤ 2"
)}
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CONSTRUCT queries

Example

Database D

fire1 occuredIn _R1 .

R1 NTPP "x ≥ 6 ∧ x ≤ 23 ∧ y ≥ 8 ∧ y ≤ 19"

Query q

CONSTRUCT { ?F type Fire }

WHERE {

?F occuredIn ?R

}

Answer (RDFi database)

D ′ = (G ′, φ)
fire1 type Fire .

R1 NTPP "x ≥ 6 ∧ x ≤ 23 ∧ y ≥ 8 ∧ y ≤ 19"

Closure property
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Representation systems for
RDFi and SPARQL
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Correctness of SPARQL query evaluation for RDFi

Does query evaluation compute the correct answer
(the answer agrees with the semantic definition)?

The following diagram should commute

. Does it?

D

D

G

G

qq

Rep

Rep

OR
Rep(JqKD) = JqKRep(D)

M. Koubarakis – Incomplete Information in RDF using Constraints 32/59



Correctness of SPARQL query evaluation for RDFi

Does query evaluation compute the correct answer
(the answer agrees with the semantic definition)?

The following diagram should commute

. Does it?

D

D

G

G

qq

Rep

Rep

OR
Rep(JqKD) = JqKRep(D)

M. Koubarakis – Incomplete Information in RDF using Constraints 32/59



Correctness of SPARQL query evaluation for RDFi

Does query evaluation compute the correct answer
(the answer agrees with the semantic definition)?

The following diagram should commute

. Does it?

D

D

G

G

qq

Rep

Rep

OR
Rep(JqKD) = JqKRep(D)

M. Koubarakis – Incomplete Information in RDF using Constraints 32/59



Correctness of SPARQL query evaluation for RDFi

Does query evaluation compute the correct answer
(the answer agrees with the semantic definition)?

The following diagram should commute

. Does it?

D

D

G

G

qq

Rep

Rep

OR
Rep(JqKD) = JqKRep(D)

M. Koubarakis – Incomplete Information in RDF using Constraints 32/59



Correctness of SPARQL query evaluation for RDFi

Does query evaluation compute the correct answer
(the answer agrees with the semantic definition)?

The following diagram should commute

. Does it?

D

D

G

G

qq

Rep

Rep

OR
Rep(JqKD) = JqKRep(D)

M. Koubarakis – Incomplete Information in RDF using Constraints 32/59



Correctness of SPARQL query evaluation for RDFi

Does query evaluation compute the correct answer
(the answer agrees with the semantic definition)?

The following diagram should commute. Does it?

D

D

G

G

qq

Rep

Rep

OR
Rep(JqKD) = JqKRep(D)

M. Koubarakis – Incomplete Information in RDF using Constraints 32/59
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(the answer agrees with the semantic definition)?

The following diagram should commute. Does it?
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G
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Correctness of SPARQL query evaluation for RDFi (cont’d)
An easy negative example

Example (classical RDF - OWA)

D

s p o .

q

CONSTRUCT { s ?p ?o }

WHERE { s ?p ?o }

Then,
JqKD = D
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Correctness of SPARQL query evaluation for RDFi (cont’d)
An easy negative example

Example

Let us compare the the set of graphs represented by JqKD with JqKRep(D)

There is no g ∈ JqKRep(D) containing the triple (c , d , e)!

I This would work if RDF made the CWA
I We know this already from the relational case [Imielinski/Lipski ’84]
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Certain answer to the rescue

Definition
The certain answer to query q over a set of RDF graphs G is set

⋂
{JqKG | G ∈ G}

Using the notion of certain answer we can relax the earlier equality
requirement to one that uses Q-equivalence.

Definition
Let Q be a fragment of SPARQL. Two sets of RDF graphs G,H
will be Q-equivalent (denoted by G ≡Q H) if they give the same
certain answer to every query q ∈ Q

⋂
{JqKG | G ∈ G} =

⋂
{JqKH | H ∈ H}
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Representation system

Let

I D be the set of all RDFi databases

I G be the set of all RDF graphs

I Rep : D → G be a function determining the set of possible
RDF graphs corresponding to an RDFi database, and

I Q be a fragment of SPARQL

〈D,Rep,Q〉 is a representation system if for all D ∈ D and all
q ∈ Q, there exists an RDFi database JqKD such that

Rep(JqKD) ≡Q JqKRep(D)

Are there interesting fragments Q of SPARQL that lead to a
representation system?
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Representation systems for RDFi

Theorem
The following fragments of SPARQL can give us representation
systems for RDFi (with D and Rep as defined):

I QC
AUF : CONSTRUCT queries using only AND, UNION,

and FILTER graph patterns, and without blank nodes in their
templates

I QC
WD : CONSTRUCT queries using only well-designed

graph patterns, and without blank nodes in their templates

Well-designed graph patterns [Pérez/Arenas/Gutierrez ’06]

I AND, FILTER, OPT fragment

I P FILTER R: safe

I P1 OPT P2: variables in P2 are properly scoped
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Representation systems for RDFi (cont’d)
Monotonicity

Definition
A fragment Q of SPARQL is monotone if for every q ∈ Q and
RDF graphs G and H such that G ⊆ H, it is JqKG ⊆ JqKH .

Proposition [Arenas/Pérez ’11]

I The fragment of SPARQL corresponding to AND, UNION,
and FILTER graph patterns is monotone.

I The fragment of SPARQL corresponding to well-designed
graph patterns is weakly-monotone (v).

Proposition

Fragments QC
AUF and QC

WD are monotone.
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An algorithm for certain answer
computation
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Computing certain answers

I Representation systems guarantee correctness of query
evaluation for RDFi and SPARQL

I Query evaluation computes an RDFi database

JqKD = D ′ = (G ′, φ)

I How could we compute the certain answer?

⋂
Rep(JqKD)

I Rep(JqKD) is infinite!
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Computing certain answers (cont’d)

Definition (EQ-completion)

The EQ-completed form of D = (G , φ), denoted by
DEQ = (GEQ , φ), is taken from D by replacing all e-literals l ∈ U
appearing in G by the constant c ∈ C such that φ |= l EQ c

Definition (Normalization)

The normalized form of D is the RDFi database D∗ = (G ∗, φ)
where G ∗ is the set

{(t, θ) | (t, θi ) ∈ G for all i = 1 . . . n, and θ is
∨

i

θi}

G = {(t, θ1), (t, θ2), (t ′, θ′)} G ∗ = {(t, θ1 ∨ θ2), (t ′, θ′)}
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Computing certain answers (cont’d)

Theorem
For D = (G , φ) and q from QC

AUF or QC
WD , the certain answer of q

over D can be computed as follows:

i) compute JqKD = Dq = (Gq, φ),

ii) compute the RDFi database (Hq, φ) = ((Dq)EQ)∗, and

iii) return the set of RDF triples

{(s, p, o) | ((s, p, o), θ) ∈ Hq such that φ |= θ and o /∈ U}
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Preliminary complexity results
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The certainty problem

CERT (q,H,D)

Input

An RDF graph H, a CONSTRUCT query q, and an RDFi

database D

Question
Does H belong to the certain answer of q over D?

H ⊆
⋂

JqKRep(D)?

We study the data complexity of CERT (q,H,D)

I H and D are part of the input

I q is fixed
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Deciding the certainty problem

Theorem
CERT (q,H,D) is equivalent to deciding whether formula

∧

t∈H
(∀ l)(φ( l) ⊃ Θ(t, q,D, l))

is true

I l is the vector of all e-literals in D

I Θ(t, q,D, l) is of the form θ1 ∨ · · · ∨ θk , where θi is a
conjunction of L-constraints
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Computational complexity

Problem L data complexity

CERT (q,H,D)
ECL/diPCL/dePCL/RCL coNP-complete

TCL/PCL (RCC-5) EXPTIME

Problem combined complexity data complexity

SPARQL PSPACE-complete

LOGSPACE
SPARQLAUF NP-complete
SPARQLWD coNP-complete
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Applications
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Applications of RDFi for TCL

Many linked geospatial datasets are populated with topological
information
Examples:

I Administrative Geography of Great Britain (ADMGB)

I Greek Administrative Geography (GAG)

I Global Administrative Areas (GADM)

I Nomenclature of Territorial Units for Statistics (NUTS)
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Applications of RDFi for TCL (cont’d)

Dataset triples regions RCC-8 relations

ADMGB 149,046 11,762 77,907
GAG 11,780 412 3,023
NUTS 316,246 2,236 3,176
GADM-EUROPE 355,656 23,037 51,309
GADM 9,896,532 27,6728 590,445

Can we do efficient reasoning for
φ |= θ?
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Reasoning example

Example

RDF graph

ex:a geo:rcc8tppi ex:b .

ex:b geo:rcc8tppi ex:c .

Spatial configuration

ab
c

ab
c

Representation

TPPI (a, b),

TPPI (b, c),

{TPPI ,NTPPI}(a, c)

Constraint network

a

b

c
{T

P
P
I}

{
T
P
P
I}

{TPPI,NTPPI}
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Reasoning algorithms

In general

I Backtracking algorithms

In particular (tractable cases)

I path-consistency algorithm
Iterative execution:

∀i , j , k R(i , j)← R(i , j) ∩ (R(i , k) ◦ R(k, j))

Symbol ◦ is the composition of sets of RCC-8 relations
(predefined)
Memory requirements: Θ(n2)
Running time: O(n3)
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Implementations of path-consistency

RCC-8 reasoners

I Renz

I PyRCC8

I PPyRCC8

RDF systems

I PelletSpatial

I Strabon

How do they perform?
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Experimental performance
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Conclusions and future work
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Conclusions

RDFi framework

I Modeling of incomplete information for property values

I Formal semantics through possible worlds semantics

I SPARQL query evaluation and certain answer semantics

I Two representation systems for RDFi and SPARQL

I Algorithm for certain answer computation

I Preliminary complexity analysis
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Future work

I Interesting representation systems

I More refined complexity results

I Scalable implementation when L expresses topological
constraints with/without constants (TCL/PCL)

I Probabilistic extension to RDFi

I Data integration theory for linked data (only practice exists so
far)

I Connection to geospatial OBDA using DL logics

I Connection with query processing for the topology vocabulary
extension of GeoSPARQL
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Thank you
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