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Logic and Databases

� Extensive interaction between logic and databases during the 
past 40 years.

� Logic provides both a unifying framework and a set of tools 
for formalizing and studying data management tasks.

� The interaction between logic and databases is a prime 
example of 

� Logic in Computer Science

but also

� Logic from Computer Science
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The Relational Data Model

Introduced by E.F. Codd, 1969-1971

� Relational Database:

Collection D = (R1, …, Rm) of finite relations (tables)

� Such a relational database D can be identified with the finite 
relational structure  A[D] = (adom(A), R1, …, Rm), where        
adom(A) is the active domain of D, i.e., 

the set of all values occurring in the relations of D. 
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Two Main Uses of Logic in Databases

� Logic as a formalism for defining database query languages

� Codd proposed using First-Order Logic as a database query 
language, under the name Relational Calculus.

� First-Order Logic (and its equivalent reformulation as 
Relational Algebra) are at the core of SQL

� Datalog = Existential Inductive Definability 

(a.k.a.  Positive First-Order Logic + Recursion)

� Logic as a specification language for expressing

database dependencies, i.e., semantic restrictions 

(integrity constraints) that the data of interest must obey.

� Keys and Functional Dependencies, Inclusion Dependencies.
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A More Recent Challenge: Data Interoperability

� Data may reside

� at several different sites

� in several different formats (relational, XML, RDF, …)

� Applications need to access and process all these data.

� Growing market of enterprise data interoperability tools:

� Multibillion dollar market; 17% annual rate of growth

� 15 major vendors in Gartner’s Magic Quadrant. 



6

A Third Use of Logic in Databases

In the past decade, logic has also been used is also used as a 

formalism to specify and study critical data interoperability tasks,

such as

� Data Integration (aka Data Federation)

and

� Data Exchange (aka Data Translation)
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Data Integration
Query heterogeneous data in different sources via a virtual 

global schema

I1

Global

Schema
I2

I3 Sources

query

S1

S2

S3

T

Q

Virtual integration 
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Data Exchange

Transform data structured under a source schema into data 
structured under a different target schema.

S T

Σ

I
J

Source Schema Target Schema

Materialization
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Challenges in Data Interoperability

Fact:

� Data interoperability tasks require expertise, effort, and time.

� Key challenge: Specify the relationship between schemas.

Earlier approach:

� Experts generate complex transformations that specify the 
relationship as programs or as SQL/XSLT scripts.

� Costly process, little automation.

More recent approach:  Use Schema Mappings

� Higher level of abstraction that separates the design of the 
relationship between schemas from its implementation.

� Schema mappings can be compiled into SQL/XSLT scripts 
automatically.
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Schema Mappings

Source  S Target  T

� Schema Mapping M = (S, T, Σ)

� Source schema  S, Target schema T

� High-level, declarative assertions Σ that specify the 
relationship between S and T. 

� Typically, Σ is a finite set of formulas in some suitable 
logical formalism (much more on this later).

� Schema mappings are the essential building blocks

in formalizing data integration and data exchange.

Σ
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Schema-Mapping Systems: State-of-the-Art

Source schema SSSS Target schema TTTT

Visual spec.Visual spec.Visual spec.Visual spec.

Declarative Schema Mappings

Executable code

(XSLT, XQuery, SQL, Java)

I
J

Generic architecture Generic architecture Generic architecture Generic architecture 

of schemaof schemaof schemaof schema----mapping mapping mapping mapping 

systemssystemssystemssystems

e.g.,

IBM Clio, HePToX

Altova MapForce

Stylus Studio

MS Biztalk Mapper
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Schema Mappings

However, schema mappings can be complex …
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Visual Specification

� Screenshot from the Bernstein and Haas 2008 CACM article 
“Information Integration in the Enterprise”.
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Schema Mappings (one of many pages)
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Schema mappings can be complex

� Additional tools are needed (beyond the visual specification) 
to design, understand, and refine schema mappings.

� Idea: Use “good” data examples.

� Analogous to using test cases in 
understanding/debugging programs.

� Earlier work by the database community includes:

� Yan, Miller, Haas, Fagin – 2001 

“Understanding and Refinement of Schema Mappings”

� Gottlob, Senellart – 2008 

“Schema mapping discovery from data instances”

� Olston, Chopra, Srivastava – 2009

“Generating Example Data for Dataflow Programs”.
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Schema Mappings and Data Examples

Research Goals:

� Develop a framework for the systematic investigation of 
data examples for schema mappings.

� Understand both the capabilities and limitations of 
data examples in capturing, deriving, and designing 
schema mappings.
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Collaborators and References

Bogdan Alexe, Balder ten Cate, Victor Dalmau, Wang-Chiew Tan

� Characterizing Schema Mappings via Data Examples

ten Cate, Alexe, K …, Tan  - ACM TODS 2011

(earlier version in PODS 2010)

� Database Constraints and Homomorphism Dualities

ten Cate, K …, Tan   - CP 2010

� Designing and Refining Schema Mappings via Data Examples

Alexe, ten Cate, K …, Tan - SIGMOD 2011

� EIRENE: Interactive Design and Refinement of Schema Mappings via Data 
Examples

Alexe, ten Cate, K …, Tan - VLDB 2011 (demo track)

� Learning Schema Mappings

ten Cate, Dalmau, K … - ICDT 2012
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Schema-Mapping Specification Languages

� Question:

What is a good language for specifying schema mappings?

� Preliminary Attempt:

Use a logic-based language to specify schema mappings.  

In particular, use first-order logic. 

� Warning:  

Unrestricted use of first-order logic as a schema-mapping 
specification language gives rise to undecidability of basic 
algorithmic problems about schema mappings.
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Schema-Mapping Specification Languages

Let us consider some simple tasks that every schema-mapping specification 

language should support:

� Copy (Nicknaming):

� Copy each source table to a target table and rename it.

� Projection:

� Form a target table by projecting on one or more columns of a source 
table.

� Column Augmentation:

� Form a target table by adding one or more columns to a source table.

� Decomposition:

� Decompose a source table into two or more target tables.

� Join:

� Form a target table by joining two or more source tables.

� Combinations of the above (e.g., join + column augmentation)
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Schema-Mapping Specification Languages

� Copy (Nicknaming):

� ∀x1, …,xn(P(x1,…,xn) → R(x1,…,xn))

� Projection:

� ∀x,y,z(P(x,y,z) → R(x,y))

� Column Augmentation:

� ∀x,y (P(x,y) → ∃ z R(x,y,z))

� Decomposition:

� ∀x,y,z (P(x,y,z) → R(x,y)Æ T(y,z))

� Join:

� ∀x,y,z(E(x,z)ÆF(z,y) → R(x,z,y))

� Combinations of the above (e.g., join + column augmentation + …)

� ∀x,y,z(E(x,z)Æ F(z,y) → ∃ w (R(x,y) Æ T(x,y,z,w)))
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Schema-Mapping Specification Languages

Fact: All preceding tasks can be specified using
source-to-target tuple-generating dependencies (s-t tgds):

∀x (ϕ(x) → ∃y ψ(x, y)), where

� ϕ(x)     is a conjunction of atoms over the source; 

� ψ(x, y) is a conjunction of atoms over the target. 

Examples:

� ∀s ∀c (Student (s) ∧ Enrolls(s,c) → ∃g Grade(s,c,g))

� ∀s ∀c (Student (s) ∧ Enrolls(s,c) → ∃t ∃g (Teaches(t,c) ∧ Grade(s,c,g)))

Note: Tuple-generating dependencies (no distinction between source and

target) are defined analogously.
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Tuple-Generating Dependencies 

They are not new:

� Extensively studied in the 1970s and the 1980s in the context of
database integrity constraints (Beeri, Fagin, Vardi, ..)
“A Survey of Database Dependencies”
by R. Fagin and M.Y. Vardi – 1987

� “A Formal System for Euclid's Elements”
by J. Avigad, E. Dean, J. Mumma
The Review of Symbolic Logic – 2009

Claim:
All theorems in Euclid's Elements can be expressed by
tuple-generating dependencies!
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Tuple-Generating Dependencies

They surface in unexpected places:

� “Relational Hidden Variables and Non-Locality”

by S. Abramsky – Studia Logica 2013

Study of foundations of quantum mechanics in a relational framework.

Fact: Many properties of quantum systems can be expressed as 

tuple-generating dependencies:

� No-signalling;  λ-independence; Outcome independence;  Parameter 
Independence; Locality

Example: No-signalling for 2-dimensional relational models

� ∀x,y,z,s,t,u,v ( R(x,y,s,t) Æ R(x,z,u,v) → ∃w R(x,z,s,w) )

“Whether an outcome s is possible for a given measurement x is

independent of the other measurements.”
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Source-to-Target Tuple-Generating Dependencies

� Source-to-target tuple generating dependencies (s-t tgds)

∀x (ϕ(x) → ∃y ψ(x, y)), where

� ϕ(x)     is a conjunction of atoms over the source; 

� ψ(x, y) is a conjunction of atoms over the target. 

They are also known as 

GLAV (global-and-local-as-view) constraints.

� They generalize LAV (local-as-view) constraints:

∀x ( P(x)  → ∃y ψ(x, y)), where P is a source relation.

� They generalize GAV (global-as-view) constraints:

∀x (ϕ(x)  → R(x)),  where R is a target relation.
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LAV and GAV Constraints

Examples of LAV (local-as-view) constraints:

� Copy and projection

� Decomposition: ∀x ∀y ∀z (P(x,y,z) → R(x,y) Æ T(y,z))

� ∀x ∀y (E(x,y) → ∃ z (H(x,z)Æ H(z,y))) 

Examples of GAV (global-as-view) constraints:

� Copy and projection

� Join: ∀x ∀y ∀z (E(x,y) Æ E(y,z) → F(x,z))

Note:  

∀s ∀c (Student (s) ∧ Enrolls(s,c) → ∃g Grade(s,c,g))

is a GLAV constraint that is neither a LAV nor a GAV constraint
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Schema Mappings

Source  S Target  T

� Schema Mapping M = (S, T, Σ)

� Source schema  S, Target schema T

� High-level, declarative constraints Σ that specify the 
relationship between S and T. 

� GLAV Schema Mapping M = (S, T, Σ)

� Σ is a finite set of GLAV constraints (s-t tgds)

� GAV and LAV Schema Mapping defined in a similar 
way.

Σ
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Semantics of Schema Mappings 

Source  S Target  T

M = (S, T, Σ) a GLAV schema mapping.

� Such a schema mapping M is a syntactic object.

� From a semantic point of view, M can be identified with

the set of all positive data examples for M, i.e., 

all data examples that satisfy (the constraints of) M. 

I
J

Σ
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Data Examples

Source  S Target  T

M = (S, T, Σ) a GLAV schema mapping 

� Data Example: A pair (I,J) where I is a source instance 
and J is a target instance.

� Positive Data Example for M:
� A data example (I,J) that satisfies Σ, i.e., (I,J) � Σ

� In this case, we say that J is a solution for I w.r.t. M.

I
J

Σ
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Data Examples

� Consider the schema mapping M = ({E}, {F}, Σ), where  

Σ = { E(x,y) → ∃z (F(x,z) ∧ F(z,y)) }

� Positive Data Examples (I,J)   (J a solution for I w.r.t. M)

� I = { E(1,2) }             J = { F(1,3), F(3,2) }

� I = { E(1,2) }             J = { F(1,X), F(X,2) }  

� I = { E(1,2) }             J = { F(1,3), F(3,2), F(3,4) }

� I = { E(1,2), E(3,4) }  J = { F(1,3), F(3,2), F(3,Y), F(Y,4) }  
X and Y are labelled nulls

� Negative Data Examples (I,J) (J not a solution for I w.r.t. M)

� I = { E(1,2) }             J = { F(1,3) }

� I = { E(1,2) }             J = { F(1,3), F(4,2) }
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Schema Mappings and Data Examples

� M = (S, T, Σ)  GLAV schema mapping

� Sem(M) = { (I,J):  (I,J) is a positive data example for M } 

Fact: Sem(M) is an infinite set

Reason:

If (I,J) is a positive data example for M and if J ⊆ J’, 

then (I,J’) is a positive data example for M.

Question: 

Can M be “characterized” using finitely many data examples?
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Goals

� Formalize what it means for a schema mapping to be 
“characterized” using finitely many data examples.

� Obtain technical results that shed light on both the 
capabilities and limitations of data examples in 
characterizing schema mappings.
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Types of Data Examples

M = (S, T, Σ) a GLAV schema mapping

So far, we have encountered two types of examples:

� Positive Data Example:

A data example (I,J) such that (I,J) satisfies Σ, i.e., a

J is a solution for I w.r.t. M.

� Negative Data Example:

A data example (I,J) such that (I,J) does not satisfy Σ, i.e.,

J is not a solution for I w.r.t. M.

A third type of example will play an important role here:

� Universal Data Example:

A data example (I,J) such that J is a universal solution for I 
w.r.t. M.
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Universal Solutions

Definition:  M = (S, T, Σ) schema mapping, I source instance.

A target instance J is a universal solution for I w.r.t. M if

� J is a solution for I w.r.t. M.

� If J’ is a solution for I w.r.t. M, then there is a homomorphism 
h: J → J’ that is constant on adom(I), which means that:

� If P(a1, …,ak) ∈ J, then P(h(a1),…h(ak)) ∈ J’

(h preserves facts)

� h(c)=c, for c ∈ adom(I).

Note: Intuitively, a universal solution for I is a most general 

(= least  specific) solution for I.
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Universal Solutions in Data Exchange

Schema  S Schema  T

I
J

Σ

J1

J2
J3

Universal Solution

Solutions

h1 h2 h3
Homomorphisms
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Universal Solutions and Examples

� Consider the schema mapping M = ({E}, {F}, Σ), where  

Σ = { E(x,y) → ∃z (F(x,z) ∧ F(z,y)) }

� Source instance I = { E(1,2) }

� Solutions for I :                                Data Examples:

� J1 =  { F(1,2), F(2,2) }                      (I,J1)  positive, not universal

� J2  =  { F(1,X), F(X,2) }                      (I,J2)  universal (and positive)

� J3 =  { F(1,X), F(X,2), F(1,Y), F(Y,2) } (I,J3)  universal (and positive)

� J4  =  { F(1,X), F(X,2), F(3,3) }            (I,J4)  positive, not universal

(where X and Y are labeled null values)

� …
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Universal Solutions and Schema Mappings

Note:  A key property of GLAV schema mappings is the

existence of universal solutions.

Theorem (FKMP 2003) M = (S, T, Σ) a GLAV schema mapping. 

� Every source instance I has a universal solution J w.r.t. M,

� Moreover, the chase procedure can be used to construct, 
given a source instance I, a canonical universal solution 
chaseM(I) for I in polynomial time.

Note: Universal solutions have become the preferred semantics 

in data exchange (the preferred solutions to materialize).
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The Chase Procedure

Chase Procedure for GLAV M = (S, T, Σ):  Given a source 

instance I, build a target instance chaseM(I) that satisfies

every s-t tgd in Σ as follows.

Whenever the LHS of some s-t tgd in Σ evaluates to true:

� Introduce new facts in chaseM(I) as dictated by the RHS of 
the s-t tgd. 

� In these facts, each time existential quantifiers need 
witnesses,  introduce new variables (labeled nulls) as values.
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The Chase Procedure

Example: Transforming edges to paths of length 2

M = (S, T, Σ)  schema mapping with
Σ :  ∀x ∀y(E(x,y)  → ∃ z(F(x,z)Æ F(z,y)))

The chase returns a relation obtained from E by adding a new

node between every edge of E.

� If I = { E(1,2) }, then chaseM(I) = { F(1,X), F(X,2) } 

� If I = { E(1,2), E(2,3), E(1,4) }, then

chaseM(I) = { F(1,X), F(X,2), F(2,Y), F(Y,3), F(1,Z), F(Z,4) }  
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The Chase Procedure

Example : Collapsing paths of length 2 to edges

M = (S, T, Σ)   GAV schema mapping with

Σ :    ∀x ∀y ∀z (E(x,z) Æ E(z,y) → F(x,y))

� If I = { E(1,3), E(2,4), E(3,4) }, then 

chaseM(I) = { F(1,4) }.

� If I =   { E(1,3), E(2,4), E(3,4), E(4,3) }, then 

chaseM(I) =  { F(1,4), F(2,3), F(3,3), F(4,4) }.

Note: No new variables are introduced in the GAV case.
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Characterizing Schema Mappings

� M = (S, T, Σ)  GLAV schema mapping

� Sem(M) = { (I,J):  (I,J) is a positive data example for M } 

Question: 

Can M be “characterized” using finitely many data examples?

More formally, this asks:

Is there is a finite set D of data examples such that M is the only

(up to logical equivalence) schema mapping for which every

example in D is of the same type as it is for M?
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Warm-up: The Copy Schema Mapping

Let M be the binary copy schema mapping specified by the constraint

∀x ∀y (E(x,y) → F(x,y)).

Question: Which is the “most representative” data example for

M, hence a good candidate for “characterizing” it?

Intuitive Answer: (I1,J1) with I1 = { E(a,b) },  J1 = { F(a,b) } 

Facts: It will turn out that:

� (I1,J1) “characterizes” M among all LAV schema mappings.

� (I1,J1) does not “characterize” M among all GLAV schema mappings; 
in fact, not even among all GAV schema mappings.

Reason: (I1,J1) is also a universal example for the GAV schema

mapping specified by ∀x ∀y ∀u ∀v (E(x,y) Æ E(u,v) → F(x,v)).
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Notions of Unique Characterizability

Definition: M = (S, T, Σ) a GLAV schema mapping, C  a class of 

GLAV constraints. 

� Let P and N be two finite sets of positive and negative examples for 
M. We say that P and N uniquely characterize M w.r.t. C if 

for every finite set  Σ’ ⊆ C such that P and N are sets of positive 
and negative examples for M’ = (S, T, Σ’), we have that Σ ≡ Σ’.

� Let U be a finite set of universal examples for M.

We say that U uniquely characterizes M w.r.t. C if 

for every finite set  Σ’ ⊆ C such that U is a set of universal

examples for M’ = (S, T, Σ’), we have that Σ ≡ Σ’.
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Relationships between Unique Characterizability Notions

Proposition: M = (S, T, Σ) a GLAV schema mapping, C  a 

class of GLAV constraints. 

If M is uniquely characterizable w.r.t. C by two finite sets of 

positive and negative examples, then M is also uniquely 

characterizable w.r.t. C by a finite set of universal examples.

Proof Idea: Uniquely characterizing

positive examples: (I+
1, J+

1),  (I+
2, J+

2), … and

negative examples: (I-
1, J-

1),   (I-
2, J-

2), …

give rise to uniquely characterizing

universal examples: (I+
1, chaseM(I+

1)), (I+
2, chaseM (I+

2)), …

(I-
1, chaseM (I-

1),  (I+
2, chaseM (I+

2)), …
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Relationships between Unique Characterizability Notions

� So, unique characterizability via positive and negative 
examples implies unique characterizability via universal 
examples.

� The converse, however, is not always true.

� For this reason, we will focus on unique characterizability via 
universal examples.
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Unique Characterizations via Universal Examples

Reminder -

Definition: Let M = (S, T, Σ) be a GLAV schema mapping.

� A universal example for M is a data example (I,J) such that J is a 
universal solution for I w.r.t. M.

� Let U be a finite set of universal examples for M, and let C  be a 
class of GLAV constraints. 

We say that U uniquely characterizes M w.r.t. C if 

for every finite set  Σ’ ⊆ C such that U is a set of universal

examples for the schema mapping M’ = (S, T, Σ’),

we have that Σ ≡ Σ’.



46

Unique Characterizations via Universal Examples

Question:

Which GLAV schema mappings can be uniquely

characterized by a finite set of universal examples and 

w.r.t. to what classes of constraints?
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Unique Characterizations Warm-Up

Theorem: Let M be the binary copy schema mapping specified 

by the constraint  ∀x ∀y (E(x,y) → F(x,y)).

� The set U = { ( I1, J1) } with  I1 = { E(a,b }, J1 = { F(a,b) } 
uniquely characterizes M w.r.t. the class of all LAV 
constraints.

� There is a finite set U’ consisting of three universal examples 
that uniquely characterizes M w.r.t. the class of all GAV 
constraints.

� There is no finite set of universal examples that uniquely 
characterizes M w.r.t. the class of all GLAV constraints.
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Unique Characterizations Warm-Up

The set U’ = { (I1,J1), (I2,J2), (I3,J3) } uniquely characterizes the 

copy schema mapping w.r.t. to the class of all GAV constraints.

J1
a b a b

a b a b

c d

e

c d

e

I2 J2

I3 J3

I1
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Unique Characterizations of LAV Mappings

Theorem: If M = (S, T, Σ) is a LAV schema mapping,

then there is a finite set U of universal examples that

uniquely characterizes M w.r.t. the class of all LAV 

constraints.

Hint of Proof: 

� Let d1, d2, …, dk be k distinct elements, where 

k = maximum arity of the relations in S.

� U consists of all universal examples (I, J) with

I = { R(c1,…,cm) }  and J = chaseM({ R(c1,…,cm) }), 
where  each ci is one of the dj’s.
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Illustration of Unique Characterizability

Let M be the binary projection schema mapping specified by

∀x ∀y (P(x,y)  → Q(x))

� The following set U of universal examples uniquely 
characterizes M w.r.t. the class of all LAV constraints:

U =  { (I1, J1),  (I2, J2) }, where

� I1 = { P(c1,c2) },    J1 = { Q(c1) }

� I2 = { P(c1,c1) },    J2 = { Q(c1) }.
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Illustration of Unique Characterizability

Let M be the schema mapping specified by

∀x ∀y (P(x,y)  → Q(x))  and  ∀x (P(x,x) → ∃y R(x,y))

� The following set U of universal examples uniquely 
characterizes M w.r.t. the class of all LAV constraints:

U =  { (I1, J1),  (I2, J2) }, where

� I1 = { P(c1,c2) },    J1 = { Q(c1) }

� I2 = { P(c1,c1) },    J2 = { Q(c1), R(c1,Y) }.
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Number of Uniquely Characterizing Examples

Note:

� The number of universal examples needed to uniquely 
characterize a LAV schema mapping is bounded by an 
exponential in the maximum arity of the relations in the 
source schema.

� This bound turns out to be tight.

Theorem: For n ≥ 3, let Mn be the n-ary copy schema mapping

specified by the constraint  

∀x1 … ∀xn(P(x1,…,xn) → Q(x1,…,xn)).

If U is a set of universal examples that uniquely characterizes 
Mn w.r.t. the class of LAV constraints, then |U| ≥ 2n – 2.
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Unique Characterizations of GAV Mappings

Note: Recall that for the schema mapping specified by the 

binary copy constraint  ∀x ∀y (E(x,y)→ F(x,y)), there is a finite

set of universal examples that uniquely characterizes it w.r.t. the

class of all GAV constraints.  

In contrast, 

Theorem: Let M be the GAV schema mapping specified by 

∀x ∀y ∀u ∀v ∀w (E(x,y)Æ E(u,v) Æ E(v,w)Æ E(w,u) → F(x,y)).

There is no finite set of universal examples that uniquely

characterizes M w.r.t. the class of all GAV constraints.



54

Unique Characterizations of GAV Mappings

Theorem: Let M be the GAV schema mapping specified by 

∀x ∀y ∀u ∀v ∀w (E(x,y)Æ E(u,v) Æ E(v,w)Æ E(w,u) → F(x,y)).

There is no finite set of universal examples that uniquely

characterizes M w.r.t. the class of all GAV constraints.

Note: 

� Extends to every GAV schema mapping specified by

∀x ∀y (E(x,y) Æ QG → F(x,y)),  where QG is the

canonical conjunctive query of a graph G containing a cycle.

This will be a consequence of more general results to be 
discussed in what follows.
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(Non)-Characterizable GAV Schema Mappings

In summary, we have that

� ∀x ∀y (E(x,y)→ F(x,y))

is uniquely characterizable by finitely many (in fact, three) 
universal examples w.r.t. the class of all GAV constraints.

� ∀x ∀y ∀u ∀v ∀w (E(x,y)Æ E(u,v) Æ E(v,w)Æ E(w,u) → F(x,y))

is not uniquely characterizable by finitely many universal 
examples w.r.t. the class of all GAV constraints.

Question: How can this difference be explained?
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Characterizing GAV Schema Mappings

� Question:

� What is the reason that some GAV schema mappings are
uniquely characterizable w.r.t. the class of all GAV 
constraints while some others are not?

� Is there an algorithm for deciding whether or not a given 
GAV schema mapping is uniquely characterizable w.r.t. the 
class of all GAV constraints?

� Answer:

� The answers to these questions are closely connected to 
database constraints and homomorphism dualities.
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Homomorphisms

Notation: A, B relational structures (e.g., graphs)

� A → B means there is a homomorphism h from A to B, 

i.e., a function h from the universe of A to the universe of B
such that if P(a1,…,am) is  a fact of A, then 

P(h(a1), …, h(am)) is a fact of B.

� Example: G → K2 if and only if G is 2-colorable

� →A = {B : B → A } 

� Example: →K2 =  Class of 2-colorable graphs

� A→ = {B: A → B}

� Example: K2→ =  Class of graphs with at least one edge.
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Homomorphism Dualities

� Definition: Let D and F be two relational structures

� (F,D) is a duality pair if for every structure A

A → D if and only if  (F ↛ A).

In symbols,   →D =  F↛
� In this case, we say that F is an obstruction for D.

� Examples:

� For graphs,  (K2, K1) is a duality pair, since

G → K1 if and only if  K2 ↛ G.

� Gallai-Hasse-Roy-Vitaver Theorem (~~~~1965) for directed graphs

Let Tk be the linear order with k elements, Pk+1 be the path with 

k+1 elements.  Then (Pk+1, Tk) is a duality pair, since for every H

H → Tk if and only  if Pk+1 ↛ H.
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Homomorphism Dualities

� Theorem (König 1936): A graph is 2-colorable if and only if it

contains no cycle of odd length.

In symbols,    →K2 = ∩i≥0 (C2i+1↛).

� Definition: Let F and D be two sets of structures. We say that 

(F, D) is a duality pair if for every structure A, TFAE

� There is a structure D in D such that A →→→→ D.

� For every structure F in F, we have F↛ A.

In symbols,    UD ∈ D (→D) = IF ∈ F ( F↛).

In this case, we say that F is an obstruction set for D.
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Homomorphism Dualities

The Yin

“Dreams”: UUUUi ( →→→→Di ) 

The Yang

“Fears”:  UUUUi ( Fi→→→→)

Duality Pair (F,D),where

F = {F1,F2,5}

D = {D1,D2,5}
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Unique Characterizations and 
Homomorphism Dualities

Theorem: Let M = (S, T, Σ) be a GAV  mapping.

Then the following statements are equivalent:

� M is uniquely characterizable via universal examples 
w.r.t. the class of all GAV constraints.

� For every target relation symbol R, the set F (M,R) of 
the canonical structures of the GAV constraints in Σ
with R as their head is the obstruction set of some finite 

set D of structures.
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Canonical Structures of GAV Constraints

Definition:

� The canonical structure of a GAV constraint

∀x (ϕ1(x) ∧ ... ∧ ϕκ(x) → R(xi1
,…,xim

)) 

is the structure consisting of the atomic facts ϕ1(x), ..., ϕκ(x)
and having constant symbols c1,…,cm interpreted by the 
variables xi1

,…,xim
in the atom R(xi1

,…,xim
).

� Let M = (S, T, Σ) be a GAV schema mapping.

For every relation symbol R in T, let F (M,R) be the set of all 
canonical structures of GAV constraints in Σ with the target 
relation symbol R in their head. 
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Canonical Structures

Examples:

� GAV constraint σ

∀x ∀y ∀z (E(x,y) Æ E(y,z) → F(x,z))

� Canonical structure: A
σ

= ({x,y,z}, {(E(x,y),E(y,z)},x,z)

� Constants c1 and c2 interpreted by the distinguished elements x 
and z.

� GAV constraint θ

∀x ∀y ∀z(E(x,y) Æ E(y,z) → F(x,x))

� Canonical structure: A
τ
= ({x,y,z}, {E(x,y),E(y,z)},x,x)

� Constants c1 and c2 both interpreted by the distinguished 
element x.
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Unique Characterizations and 
Homomorphism Dualities

Theorem: Let  M = (S, T, Σ) be a GAV mapping.

Then the following statements are equivalent:

� M is uniquely characterizable via universal examples w.r.t. the 
class of all GAV constraints.

� For every target relation symbol R, the set F (M,R) of the 
canonical structures of the GAV constraints in Σ with R as 
their head is the obstruction set of some finite set D of 
structures.
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Illustration

Let M be the GAV schema mapping specified by 

∀x (R(x,x) → P(x)).

� Canonical structure F = ({x}, {R(x,x)}, x)     

� Consider D = ({a,b}, {R(a,b), R(b,a), R(b,b)}, a})

Fact: (F,D) is a duality pair, because it is easy to see that for

every structure G=(V,R,d), we have that 

G → D if and only if F ↛ G.

Consequently, M is uniquely characterizable via universal

examples w.r.t. the class of all GAV constraints.
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Unique Characterizations and 
Homomorphism Dualities

Question:

� Is there an algorithm to decide when a GAV mapping is 
uniquely characterizable via a finite set of universal 
examples w.r.t. to the class of all GAV constraints?

� If so, what is the complexity of this decision problem?
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c-Acyclicity

Definition: Let A = (A, R1,…,Rm,c1,…ck) be a relational structure with 
constants c1,…,ck.

� The incidence graph inc(A) of A is the bipartite graph with
� nodes the elements of A and the facts of A
� edges between elements and facts in which they occur

� The structure A is c-acyclic if 
� Every cycle of Inc(A) contains at least one constant ci, and
� Only constants may occur more than once in the same fact.

Example:
� A = ({1,2,3}, {R((1,2,3), Q(1,2)}, 1) is c-acyclic

� the cycle 1 , R(1,2,3) , 2, Q(1,2), 1 contains the constant 1,
and it is the only cycle of inc(A).

� A = ({1,2,3}, {R((1,2,3), Q(1,2)}, 3) is not c-acyclic
� the cycle 1 , R(1,2,3) , 2, Q(1,2), 1 contains no constant.
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When do Homomorphism Dualities Exist?

Theorem:

Let  F be a finite set of relational structures with constants 

consisting of homomorphically incomparable core structures. 

� The following statements are equivalent:

� F is an obstruction set of some finite set D of structures.

� Each structure F in F is c-acyclic.

� Moreover, there is an algorithm that, given such a set F

consisting of c-acyclic structures, computes a finite set D of 

structures such that (F, D ) is a duality pair.

Note: Extends results of Foniok, Nešetřil, and Tardif – 2008.
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Normal Forms

Definition: A GAV schema mapping is in normal form if for 

every target relation symbol R, the set F (M,R) of the canonical 

structures of the GAV constraints in Σ with R as their head 

consists of homomorphically incomparable cores.

Fact:

� Every GAV schema mapping is logically equivalent to a GAV 
schema mapping in normal form.

� There is an algorithm based on conjunctive-query 
containment that transforms a given GAV schema mapping to 
a GAV schema mapping in normal form.  
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Unique Characterizations and
Homomorphism Dualities

Theorem: Let  M = (S, T, Σ) be a GAV schema mapping in 

normal form. Then the following statements are equivalent:

� M is uniquely characterizable via universal examples
w.r.t. the class of all GAV constraints.

� For every target relation symbol R, the set F (M,R) is the 
obstruction set of some finite set of structures.

� For every target relation symbol R, the set F (M,R) consists 
entirely of c-acyclic structures.



71

Complexity of Unique Characterizations of 
GAV Mappings

Theorem:

� This following problem is in LOGSPACE:

Given a GAV mapping M in normal form, is it uniquely 
characterizable via universal examples w.r.t. the class of all GAV 
constraints?

� The following problem is NP-complete:

Given a GAV mapping M, is it uniquely characterizable via universal 
examples w.r.t. the class of all GAV constraints?

Note:

� Recall that every GAV mapping can be transformed to a logically 
equivalent one in normal form.
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Applications

� The  GAV schema mapping M specified by 

∀ x ∀ y (E(x,y) → F(x,y)) 

is uniquely characterizable (the canonical structure is c-acyclic).

� More generally, if M is a GAV schema mapping specified by a tgd in which all 
variables in the LHS are exported to the RHS, then M is uniquely characterizable
(reason: cycles in incidence graph contain constants).

� The GAV schema mapping M specified by 

∀x ∀y ∀u ∀v ∀w (E(x,y)Æ E(u,v) Æ E(v,w)Æ E(w,u) → F(x,y)).

is not uniquely characterizable: 

the canonical structure contains a cycle with no constant on it, namely,

u, E(u,v), v, E(v,w), w, E(w,u), u

� The GAV schema mapping M specified by 

∀ x ∀ y ∀ u (E(x,y) Æ E(u,u) → F(x,y)) 

is not uniquely characterizable.
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More Applications

� The GAV schema mapping specified by the constraint
∀x ∀ y ∀ z (E(x,y) ∧ E(y,z) → F(x,z)) 

is uniquely characterizable via universal examples. 

� Let M be the GAV schema mappings specified by the constraints 
� σ: ∀x ∀ y ∀ z (E(x,y) ∧ E(y,z) Æ E(z,x) → F(x,z)) 

� τ:        ∀x ∀ y (E(x,y) ∧ E(y,x) → F(x,x)) 

The canonical structures of these constraints are

� A
σ

= ({x,y,x} {E(x,y), E(y,z), E(z,x)}, x, z)

� A
τ

= ({x,y}, {E(x,y), E(y,x)}, x, x)

� Both are c-acyclic; hence {Aσ, Aτ} is an obstruction set of a finite set 
of structures.

� Therefore, M is uniquely characterizable via universal examples.
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Synopsis

� Introduced and studied the notion of unique characterization 
of a schema mapping by a finite set of universal examples.

� Every LAV schema mapping is uniquely characterizable via 
universal examples w.r.t. the class of all LAV constraints.

� Necessary and sufficient condition, and an algorithmic 
criterion for a GAV schema mapping to be uniquely 
characterizable via universal examples w.r.t. the class of all 
GAV constraints.

� Tight connection with homomorphism dualities. 
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Open Problems

� When is a LAV schema mapping uniquely characterizable by a  
“small” number of universal examples w.r.t. to the class of all 
LAV constraints?  

� Same question for GAV schema mappings.

� When is a GLAV schema mapping uniquely characterizable by 
finitely many universal examples w.r.t. to the class of all GLAV 
constraints?

� We do not even know whether this problem is decidable.



76

From Semantics to Syntax: Deriving Schema 
Mappings from Data Examples

� The Fitting Problem for a Class C of Schema Mappings:

Given a finite set of data examples, is there a schema 
mapping in C for which they are universal?

� Learnability of Schema Mappings:

Can we learn a goal schema mapping from data examples in 

some learning theory model? 

(e.g., Angluin’s model of 

exact learning with membership queries).
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Complexity & Algorithms for the Fitting 
Problem

Theorem:

� The fitting problem for GAV mappings is DP-complete.

� The fitting problem for GLAV mappings is Π2
p -complete.

� There is an algorithm, based on a homomorphism extension test,  
that, given a finite set of data examples,

� Tests for the existence of a fitting mapping.

� If there is a fitting schema mapping, then the algorithm produces 
the most general GAV fitting mapping or

the most general GLAV fitting mapping, where most general
means that it is implied by every other fitting mapping.
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EIRENE: A System for Deriving Schema Mappings 
Interactively

� Interactive design of schema mappings from data examples 
via the fitting algorithms for GLAV and GAV mappings

I1 J1
5

Fitting GLAV schema mapping or report “none exists”

Ik Jk

User insert/delete/modify 

data examples

GLAV Fitting Algorithm

S T

Data Examples Source and Target Schemas
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Learning Schema Mappings

� Angluin’s model of exact learning with membership queries is 
very natural in this setting.

� Schema-Mapping-Reverse-Engineering Problem:

We have a “black box” (object code) for performing data 
exchange, i.e., object code for producing, given a source 
instance I, a universal solution J for I.  Can we use it to 
recover the underlying schema mapping?
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Learning GAV Mappings

Theorem: Let S be a source schema, T a target schema, and let

GAV(S, T) be the of all GAV mappings  M = (S, T, Σ).

� GAV(S, T) is efficiently exactly learnable with equivalence and 
membership queries.

� GAV(S, T) is not efficiently exactly learnable with only equivalence 
queries or only membeship queries, unless the source schema S
consists of unary relation symbols only.
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Data Interoperability:
The Elephant and the Six Blind Men

� Data interoperability remains a 
major challenge:

“Information integration is a 
beast.” (L. Haas – 2007)

� GLAV schema mappings capture 
some, but far from all, aspects of 
data interoperability.

� Much work remains to be done.

� However, mathematical theory
and computational practice can 
inform each other.
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Back-up Slides
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Armstrong Bases and Armstrong Databases

Definition: (Fagin - 1982; implicit in Armstrong - 1974) 

Σ and C two sets of constraints over the same schema.  An

Armstrong database for Σ w.r.t. C is a database D such that 
for every σ ∈ C, we have that  Σ � σ if and only if  D � σ.

Note: Armstrong databases were extensively studied in the 

context of the implication problem for database constraints.

Definition: Σ and C two sets of constraints over the same

schema.  An Armstrong basis for Σ w.r.t. C is a finite set D

of databases  such that for every σ ∈ C, we have that

Σ � σ if and only if  D � σ, for every D ∈ D.
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Armstrong Databases vs. Armstrong Bases

Example: Σ = { P(x) → P’(x), Q(x) → Q’(x) }

� There is no Armstrong database for Σ w.r.t. the class of all 
LAV constraints.

� There is an Armstrong basis for Σ w.r.t. the class of all LAV 
constraints, namely,  D = { D1, D2 } with

D1 = { P(a), P’(a) },  D2 = { Q(a), Q’(a) }.

Note: 

� Armstrong bases do not seem to have been studied earlier.

� Much of the earlier work on Armstrong bases focused on 
unirelational databases and typed constraints;  in this case, 
an Armstrong basis exists if and only if an Armstrong 
database exists. 
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Universal Examples and Armstrong Bases

Theorem: Let M = (S, T, Σ) be a GLAV schema mapping, and

let C be a set of GLAV constraints. The following are equivalent:

1. There is a finite set U of universal examples that uniquely 
characterizes M w.r.t. C. 

2. There is an Armstrong basis D for Σ w.r.t. C. 

Note: The above result:

� Reinforces the “goodness” of universal examples.

� Reveals an a priori unexpected connection between a key 
notion in data exchange and (a relaxation of) a key notion in 
database dependency theory. 


