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Introduction

A Polish group is a topological group whose topology is Polish, i.e.,
induced by a compatible complete, separable metric. Such a group is
non-archimedean if it has a nbhd basis at the identity consisting of open
subgroups.

In recent times there has been considerable activity in the study of the
dynamics of these groups and this work has led to interesting interactions
between logic, combinatorics, group theory (both in the topological and
algebraic context), topological dynamics, ergodic theory and
representation theory. In this lecture I will give a bird’s eye view of some
aspects of this area of research, concentrating on the main directions as
opposed to a detailed exposition of individual results .

Dynamics of non-archimedean Polish groups



Introduction

A Polish group is a topological group whose topology is Polish, i.e.,
induced by a compatible complete, separable metric. Such a group is
non-archimedean if it has a nbhd basis at the identity consisting of open
subgroups.

In recent times there has been considerable activity in the study of the
dynamics of these groups and this work has led to interesting interactions
between logic, combinatorics, group theory (both in the topological and
algebraic context), topological dynamics, ergodic theory and
representation theory. In this lecture I will give a bird’s eye view of some
aspects of this area of research, concentrating on the main directions as
opposed to a detailed exposition of individual results .

Dynamics of non-archimedean Polish groups



Introduction

The main directions of research in this area are in:

Topological dynamics

Ergodic theory

Unitary representations
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Automorphism groups

From the point of view of logic non-archimedean Polish groups can be
viewed as automorphism groups of countable structures and I will first
describe this point of view and the necessary background.
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Automorphism groups

Definition

A structure A = 〈A, f, g, . . . , R, S, . . . 〉 is a nonempty set A together
with families of distinguished functions (of several variables) with
arguments and values in A, relations (of several arguments) on A. In this
lecture, I will always assume that there only countably many such
functions and relations.

The sequence

(arity(f), arity(g), . . . , arity(R), arity(S), . . . , . . . )

is called the signature of the structure A.
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Automorphism groups

Examples

linear orders: L = 〈L,<〉
graphs: G = 〈G,E〉
groups: H = 〈H, ·, 1〉
vector spaces over a field F : V = 〈V,+, fa〉a∈F

metric spaces: X = 〈X,Rq〉q∈Q

Definition

A structure A as above is countable (resp., finite) if the set A is
countable (resp., finite).
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Fräıssé structures

Certain countable structures play a crucial role in this theory.

Definition

A countable structure K is a Fräıssé structure if it satisfies the following
properties:

It is infinite.

It is locally finite.

It is ultrahomogeneous (i.e., an isomorphism between finite
substructures can be extended to an automorphism of the whole
structure).

Examples

〈Q, <〉.
The random graph.

The (countable) atomless Boolean algebra.

The (countable) infinite-dimensional vector space over a finite field.
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Fräıssé structures

Certain countable structures play a crucial role in this theory.

Definition
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Fräıssé structures

Certain countable structures play a crucial role in this theory.

Definition
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Fräıssé structures

Definition

The age, Age(K), of a Fräıssé structure K is the family of all finite
structures that can be embedded into it.

Definition

A class K of finite structures of the same signature is called a Fräıssé
class if it satisfies the following properties:

(HP) Hereditary property.

(JEP) Joint embedding property.

(AP) Amalgamation property.

It is countable (up to ∼=).

It is unbounded.

It is easy to check that Age(K) is a Fräıssé class.

Dynamics of non-archimedean Polish groups
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Fräıssé structures

Joint embedding property (JEP)

A B

C

Amalgamation property (AP)

C

A B

D
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Fräıssé structures

Conversely, Fräıssé showed that one can associate to each Fräıssé class K
a canonical Fräıssé structure K = Frlim(K), called its Fräıssé limit,
which is the unique Fräıssé structure whose age is equal to K and
therefore one has a canonical one-to-one correspondence:

K 7→ Frlim(K)

between Fräıssé classes and Fräıssé structures whose inverse is:

K 7→ Age(K).

Examples

finite graphs � random graph

finite linear orderings � 〈Q, <〉
f.d. vector spaces � (countable) infinite-dimensional vector space
(over a finite field)

finite Boolean algebras � countable atomless Boolean algebra

rational finite metric spaces � the rational Urysohn space UQ
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K 7→ Age(K).

Examples

finite graphs � random graph

finite linear orderings � 〈Q, <〉
f.d. vector spaces � (countable) infinite-dimensional vector space
(over a finite field)

finite Boolean algebras � countable atomless Boolean algebra

rational finite metric spaces � the rational Urysohn space UQ

Dynamics of non-archimedean Polish groups
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Aut(A) as a topological group

For a countable structure A, we view Aut(A) as a Polish group with the
pointwise convergence topology. We now have the following
characterization of non-archimedean groups:

Theorem

For any Polish group G, the following are equivalent:

G is non-Archimedean.

G is isomorphic to a closed subgroup of S∞, the permutation group
of N with the pointwise convergence topology.

G ∼= Aut(A), for a countable structure A.

G ∼= Aut(K), for a Fräıssé structure K.
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Dynamics of Aut(A)

We will see how the study of the dynamics of these automorphism groups
is connected with finite combinatorics, group theory (topological and
algebraic), topological dynamics, ergodic theory and representation
theory.
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Part I. Topological dynamics: Universal minimal flows and
structural Ramsey theory
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Universal minimal flows

Below G is a (Hausdorff) topological group. A G-flow is a continuous
action of G on a (Hausdorff, nonempty) compact space X. A subflow of
X is a compact invariant set with the restriction of the action. A flow is
minimal if there are no proper subflows or equivalently every orbit is
dense. Every G-flow contains a minimal subflow. A homomorphism
between two G-flows X,Y is a continuous G-map π : X → Y . If Y is
minimal, then π must be onto. An isomorphism is a bijective
homomorphism.

Theorem

For any G, there is a minimal G-flow, M(G), called its universal minimal
flow with the following property: For any minimal G-flow X, there is a
homomorphism π : M(G)→ X. Moreover M(G) is uniquely determined
up to isomorphism by this property.
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Universal minimal flows

If G is compact, then M(G) = G. If G is non-compact but locally
compact, then M(G) is extremely complicated, e.g., it is non-metrizable.
However, it is a remarkable phenomenon that for non-locally compact
groups G, M(G) can even trivialize (i.e., can be a singleton)!

This leads to two general problems in topological dynamics:

When is M(G) trivial?

Even if it is not trivial, can one explicitly determine M(G) and show
that it is metrizable?

There has been an extensive study of these problems in the last 30 years
or so in the work of Gromov, Milman, Pestov, Glasner, Weiss, Giordano,
Uspenskii and others.
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Extreme amenability

Definition

A group G is called extremely amenable if its universal minimal flow
M(G) is trivial.

This is equivalent to saying that G has an extremely strong fixed point
property: Every G-flow has a fixed point. For that reason, sometimes
extremely amenable groups are also said to have the fixed point on
compacta property.

T. Mitchell (1966) raised the question of their existence. Granirer-Lau
and Veech showed in the 1970’s that no non-trivial locally compact group
can be extremely amenable. The first examples of extremely amenable
groups were produced by Herer-Christensen (1975), who, apparently
unaware of Mitchell’s question, showed that there are Polish abelian
groups that are “exotic”, i.e., admit no non-trivial unitary
representations. Such groups are extremely amenable.
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Extreme amenability

The first natural example of an extremely amenable group was produced
by Gromov-Milman (1983): U(H). The proof used concentration of
measure techniques. By such methods other important examples were
discovered later:

Furstenberg-Weiss, Glasner (1998): L(X,µ,T).

Pestov (2002): Iso(U).

Giordano-Pestov (2002): Aut(X,µ).

Pestov (1998) also produced another example: Aut(〈Q, <〉). His proof
however did not use concentration of measure techniques but rather finite
combinatorics, more specifically the classical Ramsey Theorem. From this
it also follows that H+([0, 1]) is extremely amenable.
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Metrizable universal minimal flows

The first example of calculation of a metrizable but non-trivial universal
minimal flow is due to Pestov (1998): The universal minimal flow of
H+(T) is T. Two more examples were found later by Glasner-Weiss
(2002,2003): The universal minimal flow of S∞ is the space LO of linear
orderings of N. The universal minimal flow of H(2N) is the Uspenskii
space of maximal chains of closed subsets of the Cantor space. These all
used Ramsey techniques.
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Universal minimal flows of automorphism groups

We will next discuss the study of extreme amenability and calculation of
universal minimal flows for automorphism groups of countable structures.
This was undertaken in a paper of K-Pestov-Todorcevic (2005). The
main outcome of this paper is the development of a duality theory which
shows that there is an equivalence between the structure of the universal
minimal flow of the automorphism group of a Fräıssé structure and the
Ramsey theory of its finite “approximations”, i.e., its age.

Dynamics of non-archimedean Polish groups



Structural Ramsey theory

We first recall the classical Ramsey Theorem.

Given n,m, k,M ≥ 1, with k ≤ m ≤M , the notation

M → (m)k
n

means that if we color the k-element subsets of {1, . . . ,M} with n
colors, there is a subset X of {1, . . . ,M} of size m which is
monochromatic, i.e., all k-element subsets of X have the same color.

Theorem (Ramsey 1930)

For each n,m, k ≥ 1, with m ≥ k, there is M ≥ m, such

M → (m)k
n
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Structural Ramsey theory

Structural Ramsey theory is a deep generalization of the classical Ramsey
theorem to classes of finite structures. It was developed primarily in the
1970’s by: Graham, Leeb, Rothschild, Nešeťril, Rödl, Prömel, Voigt,
Abramson-Harrington, ...

Definition

A class K of finite structures (in the same signature) has the Ramsey
Property if for any A ≤ B in K, and any n ≥ 1, there is C ≥ B in K,
such that

C → (B)A
n .

Examples of classes with the Ramsey property:

finite linear orderings (Ramsey)

finite Boolean algebras (Graham-Rothschild)

finite-dimensional vector spaces over a given finite field
(Graham-Leeb-Rothschild)

finite ordered graphs (Nešeťril-Rödl)

However, the class of finite graphs does not have the Ramsey property!
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Abramson-Harrington, ...

Definition

A class K of finite structures (in the same signature) has the Ramsey
Property if for any A ≤ B in K, and any n ≥ 1, there is C ≥ B in K,
such that

C → (B)A
n .

Examples of classes with the Ramsey property:

finite linear orderings (Ramsey)

finite Boolean algebras (Graham-Rothschild)

finite-dimensional vector spaces over a given finite field
(Graham-Leeb-Rothschild)

finite ordered graphs (Nešeťril-Rödl)
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Duality theory

We can now summarize in general terms the main point of the duality
theory alluded to earlier:

Let K be a Fräıssé class of finite structures and K = Frlim(K) its Fräıssé
limit. Then we have a canonical correspondence:

structure of the UMF of Aut(K) ↔ Ramsey theory of K

It would take too long to try to explain this in detail, so I illustrate this
correspondence with some representative results and then discuss
applications of this theory.
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Extreme amenability of automorphism groups

We will first consider the problem of characterizing the extremely
amenable automorphism groups. We have seen they are all of the form
G = Aut(K) for a Fräıssé structure K. But which automorphism groups
of Fräıssé structures are extremely amenable?

Theorem (KPT)

Let K be a Fräıssé class and K its limit. Then the following are
equivalent:

Aut(K) is extremely amenable.

K consists of rigid structures and has the Ramsey property.

Using the results of the structural Ramsey theory gives now a plethora of
new examples of interesting extremely amenable groups.
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G = Aut(K) for a Fräıssé structure K. But which automorphism groups
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Extreme amenability of automorphism groups

Rigid Fräıssé class K

Ramsey property of K

linear orders
ordered graphs
lex. ordered vector spaces
lex. ordered Boolean algebras
ordered rational metric spaces

Fräıssé limit K

extreme amenability of Aut(K)

Aut(〈Q, <〉)
Aut(〈R, <〉)
Aut(〈V ∞, <〉)
Aut(〈B∞, <〉)
Aut(〈UQ, <〉)
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Calculation of universal minimal flows

This duality theory also extends to the calculation of (non-trivial)
metrizable universal minimal flows for automorphism groups. In certain
situations one can assign to a Fräıssé class K with limit K a companion
Fräıssé class K∗ consisting of structures of the form 〈A, <〉, obtained by
adding to each structure A in K appropriate “admissible orderings”. This
gives rise to a canonical flow XK∗ of the automorphism group of K. It is
the compact, metrizable space of “admissible orderings” on K, i.e., the
linear orderings on K with the property that their restrictions to the
finite substructures are admissible. Then we have the following:

Theorem (KPT)

For each Fräıssé class K with limit K, the following are equivalent:

XK∗ is the universal minimal flow of the automorphism group of K.

K∗ has the Ramsey Property and the Ordering Property.
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Fräıssé class K∗ consisting of structures of the form 〈A, <〉, obtained by
adding to each structure A in K appropriate “admissible orderings”. This
gives rise to a canonical flow XK∗ of the automorphism group of K. It is
the compact, metrizable space of “admissible orderings” on K, i.e., the
linear orderings on K with the property that their restrictions to the
finite substructures are admissible. Then we have the following:

Theorem (KPT)
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Calculation of universal minimal flows

The concept of the ordering property is also an important ingredient in
the structural Ramsey theory that has been introduced by Nešeťril and
Rödl in the 1970’s.

Definition

For K,K∗ as above we say that K∗ has the ordering property if for every
A in K there is a B in K such that for any admissible ordering < of A
and any admissible ordering <′ of B there is an embedding of 〈A, <〉
into 〈B, <′〉.

Dynamics of non-archimedean Polish groups



Calculation of universal minimal flows

Examples

K = finite graphs, K = R; K∗ = finite ordered graphs. Then the
UMF of Aut(R) is the space XK∗ of all linear orderings of the
random graph.

K = finite sets, K = 〈N〉; K∗ = finite orderings. Then the UMF of
S∞ is the space XK∗ of all linear orderings on N (Glasner-Weiss).

K = f.d. vector spaces over a fixed finite field, K = V ∞; K∗ = lex.
ordered f.d. vector spaces. Then the UMF of the general linear
group of V ∞ is the space XK∗ of all “lex. orderings” on V ∞.

K = finite posets, K = P ; K∗ = finite posets with linear
extensions. Then the UMF of Aut(P ) is the space XK∗ of all linear
extensions of the random poset.
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Applications of the duality theory

Duality establishes the equivalence between the structure of the universal
minimal flow of a Fräıssé structure and the Ramsey properties of its age
and therefore one can use the extensive structural Ramsey theory to
analyze such universal minimal flows and discover many new examples of
extremely amenable groups.

Also automorphism groups of Fräıssé structures often admit dense
embeddings into other “larger” Polish groups. If G is extremely amenable
and can be densely embedded in H, then H is also extremely amenable.
Thus results concerning extreme amenability of automorphism groups,
which use combinatorial methods, can be used to establish extreme
amenability of other groups which were originally established by
concentration of measure techniques.
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Applications of the duality theory

Duality also has had an interesting indirect effect on structural Ramsey
theory. In trying to applying duality theory to various Fräıssé classes that
occur naturally, it motivated the discovery of new structural Ramsey
theorems, for example:

(Nešeťril, 2007) finite ordered metric spaces

(Nguyen Van The, 2008) ultrametric and other classes of finite
ordered metric spaces.
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Part II. Ergodic theory
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Amenable groups

I will next discuss some very recent work of Omer Angel, K. and Russ
Lyons in the ergodic theory of automorphism groups of Fräıssé structures.

Let G be a Polish group acting continuously on a compact space X, i.e.,
X is a G-flow. We will be looking at invariant Borel probability measures
for such an action. In general such measures might not exist.

Definition

The group G is called amenable if every G-flow admits an invariant Borel
probability measure.

In particular every extremely amenable group is amenable. On the other
hand S∞ is amenable but not extremely amenable and the automorphism
group of the countable atomless Boolean algebra is not amenable.
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Hrushovski structures

A particularly important class of automorphism groups that turn out to
be amenable is the following.

Definition

Let K be a Fräıssé class of finite structures. We say that K is a
Hrushovski class if for any A in K there is B in K containing A such
that any partial automorphism of A extends to an automorphism of B.

Some basic examples of such classes are the pure sets, graphs
(Hrushovski), rational valued metric spaces (Solecki), finite dimensional
vector spaces over finite fields, etc.

Definition

Let K be a Fräıssé class of finite structures and K its Fräıssé limit. If K
is a Hrushovski class, then we say that K is a Hrushovski structure.
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Let K be a Fräıssé class of finite structures. We say that K is a
Hrushovski class if for any A in K there is B in K containing A such
that any partial automorphism of A extends to an automorphism of B.

Some basic examples of such classes are the pure sets, graphs
(Hrushovski), rational valued metric spaces (Solecki), finite dimensional
vector spaces over finite fields, etc.

Definition

Let K be a Fräıssé class of finite structures and K its Fräıssé limit. If K
is a Hrushovski class, then we say that K is a Hrushovski structure.

Dynamics of non-archimedean Polish groups



Hrushovski structures

This turns out to be a property of automorphism groups:

Proposition (K-Rosendal)

Let K be a Fräıssé class of finite structures and K its Fräıssé limit.
Then the following are equivalent

K is a Hrushovski structure.

Aut(K) is compactly approximable, i.e., there is a increasing
sequence Kn of compact subgroups whose union is dense in the
automorphism group.

In particular the automorphism group of a Hrushovski structure is
amenable.
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Unique ergodicity

Definition

If G is an amenable group and X a G-flow, then we say that this flow is
uniquely ergodic if there is a unique invariant probability Borel measure
(which then must be ergodic).

We now consider the following property of groups.

Definition

If G is an amenable group, then we say that it is uniquely ergodic if every
minimal G-flow has a unique invariant probability Borel measure.
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Unique ergodicity

Trivially every extremely amenable group and every compact group is
uniquely ergodic. Glasner and Weiss have shown that S∞ is uniquely
ergodic. On the other hand, Weiss has shown that no infinite countable
group is uniquely ergodic and he believes that this extends to
non-compact locally compact groups, although this has not been checked
in detail yet.
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Unique ergodicity as a quantitative version of the Ordering
Property

Interestingly it turned out that unique ergodicity fits well in the
framework of the duality theory of KPT (which originally was developed
in the context of topological dynamics). In many cases it can simply be
viewed as a quantitative version of the Ordering Property.

Definition (AKL)

Let K∗ be a companion of K. We say that K∗ satisfies the Quantitative
Ordering Property (QOP) if the following holds:

There is an isomorphism invariant map that assigns to each structure
A∗ = 〈A, <〉 ∈ K∗ a real number ρ(A∗) in [0, 1] such that for every
A ∈ K and each ε > 0, there is a B ∈ K and a nonempty set of
embeddings E(A,B) of A into B with the property that for each
K∗-admissible ordering < of A and each K∗-admissible ordering <′ of B
the proportion of embeddings in E(A,B) that preserve <,<′ is equal to
ρ(〈A, <〉), within ε.
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Unique ergodicity as a quantitative version of the Ordering
Property

For example, if K is the class of finite graphs, where K∗ is the class of
ordered finite graphs, one can establish QOP by showing that for any
finite graph A with n vertices and ε > 0, there is a graph B, containing
a copy of A, such that given any orderings < on A and <′ on B, the
proportion of all embeddings of A into B that preserve the orderings
<,<′ is, up to ε, equal to 1/n!.
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Unique ergodicity as a quantitative version of the Ordering
Property

Theorem (AKL)

Let K∗ be a companion of K and let G be the automorphism group of
the Fräıssé limit of K and assume that G is amenable. Then QOP
implies the unique ergodicity of G. Moreover, if K is a Hrushovski class,
QOP is equivalent to the unique ergodicity of G.
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Proving unique ergodicity

By more direct means (but still using the calculation of the UMF), one
can show that the following automorphism groups are uniquely ergodic:

S∞ (Glasner-Weiss)

The isometry group of the Baire space and various ultrametric
Urysohn spaces (AKL)

The general linear group of the (countably) infinite-dimensional
vector space over a finite field (AKL)

By applying now the preceding QOP criterion and probabilistic arguments
(deviation inequalities) one can now also show the following:

Theorem (AKL)

The automorphism groups of the following structures are uniquely ergodic

The random graph

The random Kn-free graph

The random n-uniform hypergraph

The rational Urysohn space
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Unique Ergodicity Problem

In fact I do not know any counterexample to the following problem:

Problem (Unique Ergodicity Problem)

Let G be a non-Archimedean group with a metrizable universal minimal
flow. If G is amenable, then is it uniquely ergodic?
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Part III. Unitary representations
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Unitary representations

Definition

Let G be a Polish group. A continuous representation of G is a
continuous action of G on a (complex) Hilbert space H by unitary
transformations. It is irreducible if it has no non-trivial closed (linear)
subspaces.

A goal of representation theory is to describe the irreducible
representations and understand how other representations are build out of
the irreducible ones.
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The Peter-Weyl Theorem

A classical example of such an analysis is the Peter-Weyl Theorem for
compact groups.

Theorem (Peter-Weyl)

Let G be a compact metrizable group.

There are only countably many irreducible representations of G and
every representation of G is a direct sum of irreducible
representations.

The irreducible representations are all finite dimensional and the
left-regular representation of G is the direct sum of all the
irreducible representations each appearing with a multiplicity equal
to its dimension.
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An analog of Peter-Weyl for oligomorphic groups

Recently Tsankov proved a very interesting analog of Peter-Weyl for
oligomorphic automorphism groups, which in general are far from
compact. This is a major extension of earlier results that were proved, by
different methods, for S∞ itself and (a variant of) the general linear
group of the (countable) infinite dimensional vector space over a finite
field by Lieberman and Olshanski.

Definition

An automorphism group is oligomorphic if for each n ≥ 1 its action on
n-tuples (of the underlying structure) has only finitely many orbits.
Equivalently, by a theorem of Engeler, Ryll-Nardzewski and Svenonius,
these are the automorphism groups of ℵ0-categorical (Fräıssé) structures.

For example the automorphism group of any relational Fräıssé structure
in a finite signature has this property.
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An analog of Peter-Weyl for oligomorphic groups

Theorem (Tsankov)

Let G be an oligomorphic group. There are only countably many
irreducible representations of G and every representation of G is a direct
sum of irreducible representations.

Remark: In general these irreducible representations are not
finite-dimensional.
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An analog of Peter-Weyl for oligomorphic groups

Moreover in many cases Tsankov provides an explicit description of the
irreducible representations. For example, for the automorphism group of
the random graph one obtains all the irreducible representations by
“lifting” through the process of induction the irreducible representations
of the automorphism groups of finite graphs. Also for the automorphism
group of the rational order, the irreducible representations are exactly the
actions of this group on `2([Q]n), where [Q]n is the set of n elements
subsets of Q.
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Property (T)

Finally Tsankov uses his analysis to show that many oligomorphic groups
have Kazhdan’s propery (T).

Definition

A topological group G has property (T) if there is compact Q ⊆ G and
ε > 0 such every unitary representation of G that has a unit
(Q, ε)-invariant vector actually has a unit invariant vector.

Such groups include S∞ and the automorphism groups of the random
graph, the atomless countable Boolean algebra, the rational order and
the countable infinite-dimensional vector space over a finite field (with
actually a Q of size 2.).
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